Header

UZH-Logo

Maintenance Infos

The rBAT gene is responsible for L-cystine uptake via the b0,(+)-like amino acid transport system in a "renal proximal tubular" cell line (OK cells).


Mora, C; Chillarón, J; Calonge, M J; Forgo, J; Testar, X; Nunes, V; Murer, H; Zorzano, A; Palacín, M (1996). The rBAT gene is responsible for L-cystine uptake via the b0,(+)-like amino acid transport system in a "renal proximal tubular" cell line (OK cells). Journal of Biological Chemistry, 271(18):10569-10576.

Abstract

Several studies have shown that the cRNA of human, rabbit, or rat rBAT induces in Xenopus oocytes sodium-independent, high affinity uptake of L-cystine via a system b0,(+)-like amino acid exchanger. We have shown that mutations in rBAT cause type I cystinuria (Calonge, M. J., Gasparini, P., Chillarón, J., Chillón, M., Gallucci, M., Rousaud, F., Zelante, L., Testar, X., Dallapiccola, B., Di Silverio, F., Barceló, P., Estivill, X., Zorzano, A., Nunes, V., and Palacín, M. (1994) Nat. Genet. 6, 420-425; Calonge, M. J., Volipini, V., Bisceglia, L., Rousaud, F., De Sanctis, L., Beccia, E., Zelante, L., Testar, X., Zorzano, A., Estivill, X., Gasparini, P., Nunes, V., and Palacín, M. (1995) Proc. Natl. Acad. Sci. U. S. A. 92, 9667-9671). Apart from oocytes, no other expression system has been used for transfection of functional rBAT activity. Furthermore, the b0,(+)-like transport activity has not been clearly described in the kidney or intestine. Here, we report that a "proximal tubular-like" cell line derived from opossum kidney (OK cells) expresses an rBAT transcript. Poly(A)+ RNA from OK cells induced by system b0,(+)-like transport activity in oocytes. This was hybrid-depleted by human rBAT antisense oligonucleotides. A polymerase chain reaction-amplified cDNA fragment (approximately 700 base pairs) from OK cell RNA corresponds to an rBAT protein fragment 65-69% identical to those from human, rabbit and rat kidneys. We have also examined transport of l-cystine in OK cells and found characteristics very similar to the amino acid exchanger activity induced by rBAT cRNA in oocytes. Uptake of L-cystine was of high affinity, sodium-independent and shared with L-arginine and L-leucine. It was trans-stimulated by amino acids with the same specificity as rBAT-induced transport activity in oocytes. Furthermore, it was localized to the apical pole of confluent OK cells. To demonstrate that the rBAT protein is functionally related to this transport activity, we have transfected OK cells with human rBAT antisense and sense sequences. Transfection with rBAT antisense, but not with rBAT sense, resulted in the specific reduction of rBAT mRNA expression and b0,(+)-like transport activity. These results demonstrate that rBAT is functionally related to the L-cystine uptake via system b0,(+)-like in the apical pole of the renal OK cell line.

Abstract

Several studies have shown that the cRNA of human, rabbit, or rat rBAT induces in Xenopus oocytes sodium-independent, high affinity uptake of L-cystine via a system b0,(+)-like amino acid exchanger. We have shown that mutations in rBAT cause type I cystinuria (Calonge, M. J., Gasparini, P., Chillarón, J., Chillón, M., Gallucci, M., Rousaud, F., Zelante, L., Testar, X., Dallapiccola, B., Di Silverio, F., Barceló, P., Estivill, X., Zorzano, A., Nunes, V., and Palacín, M. (1994) Nat. Genet. 6, 420-425; Calonge, M. J., Volipini, V., Bisceglia, L., Rousaud, F., De Sanctis, L., Beccia, E., Zelante, L., Testar, X., Zorzano, A., Estivill, X., Gasparini, P., Nunes, V., and Palacín, M. (1995) Proc. Natl. Acad. Sci. U. S. A. 92, 9667-9671). Apart from oocytes, no other expression system has been used for transfection of functional rBAT activity. Furthermore, the b0,(+)-like transport activity has not been clearly described in the kidney or intestine. Here, we report that a "proximal tubular-like" cell line derived from opossum kidney (OK cells) expresses an rBAT transcript. Poly(A)+ RNA from OK cells induced by system b0,(+)-like transport activity in oocytes. This was hybrid-depleted by human rBAT antisense oligonucleotides. A polymerase chain reaction-amplified cDNA fragment (approximately 700 base pairs) from OK cell RNA corresponds to an rBAT protein fragment 65-69% identical to those from human, rabbit and rat kidneys. We have also examined transport of l-cystine in OK cells and found characteristics very similar to the amino acid exchanger activity induced by rBAT cRNA in oocytes. Uptake of L-cystine was of high affinity, sodium-independent and shared with L-arginine and L-leucine. It was trans-stimulated by amino acids with the same specificity as rBAT-induced transport activity in oocytes. Furthermore, it was localized to the apical pole of confluent OK cells. To demonstrate that the rBAT protein is functionally related to this transport activity, we have transfected OK cells with human rBAT antisense and sense sequences. Transfection with rBAT antisense, but not with rBAT sense, resulted in the specific reduction of rBAT mRNA expression and b0,(+)-like transport activity. These results demonstrate that rBAT is functionally related to the L-cystine uptake via system b0,(+)-like in the apical pole of the renal OK cell line.

Statistics

Citations

Dimensions.ai Metrics
60 citations in Web of Science®
61 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

107 downloads since deposited on 11 Feb 2008
5 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed
Communities & Collections:04 Faculty of Medicine > Institute of Physiology
07 Faculty of Science > Institute of Physiology
Dewey Decimal Classification:570 Life sciences; biology
Scopus Subject Areas:Life Sciences > Biochemistry
Life Sciences > Molecular Biology
Life Sciences > Cell Biology
Language:English
Date:3 May 1996
Deposited On:11 Feb 2008 12:22
Last Modified:24 Jun 2022 08:28
Publisher:American Society for Biochemistry and Molecular Biology
ISSN:0021-9258
OA Status:Hybrid
Free access at:Publisher DOI. An embargo period may apply.
Publisher DOI:https://doi.org/10.1074/jbc.271.18.10569
Related URLs:http://www.jbc.org/cgi/content/abstract/271/18/10569
PubMed ID:8631857