Navigation auf zora.uzh.ch

Search ZORA

ZORA (Zurich Open Repository and Archive)

Evidence-based design recommendations for prevalence studies on multimorbidity: improving comparability of estimates

Holzer, Barbara M; Siebenhuener, Klarissa; Bopp, Matthias; Minder, Christoph E (2017). Evidence-based design recommendations for prevalence studies on multimorbidity: improving comparability of estimates. Population Health Metrics, 15(1):9.

Abstract

Background: In aging populations, multimorbidity causes a disease burden of growing importance and cost. However, estimates of the prevalence of multimorbidity (prevMM) vary widely across studies, impeding valid comparisons and interpretation of differences. With this study we pursued two research objectives: (1) to identify a set of study design and demographic factors related to prevMM, and (2) based on (1), to formulate design recommendations for future studies with improved comparability of prevalence estimates.
Methods: Study data were obtained through systematic review of the literature. UsingPubMed/MEDLINE, Embase, CINAHL, Web of Science, BIOSIS, and Google Scholar, we looked for articles with the terms “multimorbidity,” “comorbidity,” “polymorbidity,” and variations of these published in English or German in the years 1990 to 2011. We selected quantitative studies of the prevalence of multimorbidity (two or more chronic medical conditions) with a minimum sample size of 50 and a study population with a majority of Caucasians. Our database consisted of prevalence estimates in 108 age groups taken from 45 studies. To assess the effects of study design variables, we used meta regression models.
Results: In 58% of the studies, there was only one age group, i.e., no stratification by age. The number of persons per age group ranged from 136 to 5.6 million. Our analyses identified the following variables as highly significant: “mean age,” “number of age groups”, and “data reporting quality” (all p < 0.0001). “Setting,” “disease classification,” and “number of diseases in the classification” were significant (0.01 < p ≤ 0.03), and “data collection period” and “data source” were non-significant. A separate analysis showed that prevMM was significantly higher in women than men (sign test, p = 0.0015).
Conclusions: Comparable prevalence estimates are urgently needed for realistic description of the magnitude of the problem of multimorbidity. Based on the results of our analyses of variables affecting prevMM, we make some design recommendations. Our suggestions were guided by a pragmatic approach and aimed at facilitating the implementation of a uniform methodology. This should aid progress towards a more uniform operationalization of multimorbidity.
Keywords: Age, Gender, Study design variables, Multiple chronic conditions, Systematic review

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > University Hospital Zurich > Clinic and Policlinic for Internal Medicine
04 Faculty of Medicine > Epidemiology, Biostatistics and Prevention Institute (EBPI)
04 Faculty of Medicine > Center of Competence Multimorbidity
08 Research Priority Programs > Dynamics of Healthy Aging
Dewey Decimal Classification:610 Medicine & health
Scopus Subject Areas:Health Sciences > Epidemiology
Health Sciences > Public Health, Environmental and Occupational Health
Language:English
Date:2017
Deposited On:27 Mar 2017 14:46
Last Modified:16 Jan 2025 02:41
Publisher:BioMed Central
ISSN:1478-7954
OA Status:Gold
Free access at:PubMed ID. An embargo period may apply.
Publisher DOI:https://doi.org/10.1186/s12963-017-0126-4
PubMed ID:28270157
Download PDF  'Evidence-based design recommendations for prevalence studies on multimorbidity: improving comparability of estimates'.
Preview
  • Content: Published Version
  • Licence: Creative Commons: Attribution 4.0 International (CC BY 4.0)

Metadata Export

Statistics

Citations

Dimensions.ai Metrics
37 citations in Web of Science®
36 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

90 downloads since deposited on 27 Mar 2017
4 downloads since 12 months
Detailed statistics

Authors, Affiliations, Collaborations

Similar Publications