Header

UZH-Logo

Maintenance Infos

IL-4 and IL-10 antagonize IL-12-mediated protection against acute vaccinia virus infection with a limited role of IFN-gamma and nitric oxide synthetase 2


van den Broek, Maries; Bachmann, M F; Köhler, G; Barner, M; Escher, R; Zinkernagel, R; Kopf, M (2000). IL-4 and IL-10 antagonize IL-12-mediated protection against acute vaccinia virus infection with a limited role of IFN-gamma and nitric oxide synthetase 2. Journal of Immunology, 164(1):371-378.

Abstract

Resistance or susceptibility to most infectious diseases is strongly determined by the balance of type 1 vs type 2 cytokines produced during infection. However, for viruses, this scheme may be applicable only to infections with some cytopathic viruses, where IFN-gamma is considered as mandatory for host defense with little if any participation of type 2 responses. We studied the role of signature Th1 (IL-12, IFN-gamma) and Th2 (IL-4, IL-10) cytokines for immune responses against vaccinia virus (VV). IL-12-/- mice were far more susceptible than IFN-gamma-/- mice, and primary CTL responses against VV were absent in IL-12-/- mice but remained intact in IFN-gamma-/- mice. Both CD4+ and CD8+ T cells from IL-12-/- mice were unimpaired in IFN-gamma production, although CD4+ T cells showed elevated Th2 cytokine responses. Virus replication was impaired in IL-4-/- mice and, even more strikingly, in IL-10-/- mice, which both produced elevated levels of the proinflammatory cytokines IL-1alpha and IL-6. Thus, IL-4 produced by Th2 cells and IL-10 produced by Th2 cells and probably also by macrophages counteract efficient anti-viral host defense. Surprisingly, NO production, which is considered as a major type 1 effector pathway inhibited by type 2 cytokines, appears to play a limited role against VV, because NO sythetase 2-deficient mice did not show increased viral replication. Thus, our results identify a new role for IL-12 in defense beyond the induction of IFN-gamma and show that IL-4 and IL-10 modulate host protective responses to VV.

Abstract

Resistance or susceptibility to most infectious diseases is strongly determined by the balance of type 1 vs type 2 cytokines produced during infection. However, for viruses, this scheme may be applicable only to infections with some cytopathic viruses, where IFN-gamma is considered as mandatory for host defense with little if any participation of type 2 responses. We studied the role of signature Th1 (IL-12, IFN-gamma) and Th2 (IL-4, IL-10) cytokines for immune responses against vaccinia virus (VV). IL-12-/- mice were far more susceptible than IFN-gamma-/- mice, and primary CTL responses against VV were absent in IL-12-/- mice but remained intact in IFN-gamma-/- mice. Both CD4+ and CD8+ T cells from IL-12-/- mice were unimpaired in IFN-gamma production, although CD4+ T cells showed elevated Th2 cytokine responses. Virus replication was impaired in IL-4-/- mice and, even more strikingly, in IL-10-/- mice, which both produced elevated levels of the proinflammatory cytokines IL-1alpha and IL-6. Thus, IL-4 produced by Th2 cells and IL-10 produced by Th2 cells and probably also by macrophages counteract efficient anti-viral host defense. Surprisingly, NO production, which is considered as a major type 1 effector pathway inhibited by type 2 cytokines, appears to play a limited role against VV, because NO sythetase 2-deficient mice did not show increased viral replication. Thus, our results identify a new role for IL-12 in defense beyond the induction of IFN-gamma and show that IL-4 and IL-10 modulate host protective responses to VV.

Statistics

Citations

Dimensions.ai Metrics
108 citations in Web of Science®
117 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

55 downloads since deposited on 08 Feb 2018
8 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > Institute of Experimental Immunology
Dewey Decimal Classification:570 Life sciences; biology
610 Medicine & health
Scopus Subject Areas:Health Sciences > Immunology and Allergy
Life Sciences > Immunology
Language:English
Date:1 January 2000
Deposited On:08 Feb 2018 15:26
Last Modified:21 Nov 2023 08:01
Publisher:American Association of Immunologists
ISSN:0022-1767
OA Status:Hybrid
Free access at:Publisher DOI. An embargo period may apply.
Publisher DOI:https://doi.org/10.4049/jimmunol.164.1.371
PubMed ID:10605032
  • Content: Published Version