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CONCEPTS  AND QUESTIONS

Using decision analysis to support 
proactive management of emerging 
infectious wildlife diseases

Evan H Campbell Grant1,*, Erin Muths2, Rachel A Katz1,3, Stefano Canessa4, Michael J Adams5, Jennifer R Ballard6, 

Lee Berger7, Cheryl J Briggs8, Jeremy TH Coleman9, Matthew J Gray10, M Camille Harris11, Reid N Harris12,  

Blake Hossack13, Kathryn P Huyvaert14, Jonathan Kolby7, Karen R Lips15, Robert E Lovich16, Hamish I McCallum17, 

Joseph R Mendelson  III18,19, Priya Nanjappa20, Deanna H Olson21, Jenny G Powers22, Katherine LD Richgels23,24, 

Robin E Russell23, Benedikt R Schmidt25,26, Annemarieke Spitzen-van der Sluijs27, Mary Kay Watry28,  

Douglas C Woodhams29, and C LeAnn White23

Despite calls for improved responses to emerging infectious diseases in wildlife, management is seldom 

 considered until a disease has been detected in affected populations. Reactive approaches may limit the 

potential for control and increase total response costs. An alternative, proactive management framework can 

identify immediate actions that reduce future impacts even before a disease is detected, and plan subsequent 

actions that are conditional on disease emergence. We identify four main obstacles to developing proactive 

management strategies for the newly discovered salamander pathogen Batrachochytrium salamandrivorans 

(Bsal). Given that uncertainty is a hallmark of wildlife disease management and that associated decisions are 

often complicated by multiple competing objectives, we advocate using decision analysis to create and eval-

uate trade- offs between proactive (pre- emergence) and reactive (post- emergence) management options. 

Policy makers and natural resource agency personnel can apply principles from decision analysis to improve 

strategies for countering emerging infectious diseases.

Front Ecol Environ 2017; 15(4): 214–221, doi:10.1002/fee.1481

Because pathogens are recognized as an increasing 
 threat to biodiversity (Daszak et al. 2000), the selec-

tion and application of disease mitigation and control 

actions must be improved. Since 2000, there have been 
multiple calls for better surveillance, international coordi-
nation, and responses to emerging wildlife diseases 
(Kuiken et al. 2002; Grogan et al. 2014; Voyles et al. 2014), 
and the capacity for researchers and management agencies 
to identify mitigation actions has increased substantially. 
For example, the first conservation plans for the fungal 
pathogen Batrachochytrium dendrobatidis (Bd) were devel-
oped in 2005 and 2006 in Australia and the US, respec-
tively, nearly a decade after Bd was identified as the cause 
of substantial amphibian population declines and extinc-
tions (Berger et al. 1998). In contrast, a response plan for 
the fungal pathogen Pseudogymnoascus destructans (Pd) 
was drafted in 2010, just 2 years after the pathogen was 
identified as the cause of white nose syndrome (Voyles 
et al. 2014). Despite this improvement, such plans still 
emphasize reactive responses, with management consid-
ered only after the occurrence of the disease has been 
documented in wild populations. This post- hoc “crisis 
management” strategy is typical in wildlife disease out-
breaks (Voyles et al. 2014) and conservation decision 
making in general (Lindenmayer et al. 2013). An alterna-
tive, more proactive approach is increasingly recognized as 
potentially beneficial for management of human diseases 
(Machalaba and Karesh 2015) and can also benefit wild-
life conservation (Hyatt et al. 2015). By evaluating the 
range of actions that could be taken in advance of a hypo-
thetical disease introduction, managers can minimize the 
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In a nutshell:
• Effective management of emerging infectious disease is 

characterized by a need for rapid response in the face of 
uncertainty

• Exploring, developing, and implementing proactive 
 management strategies (prior to emergence) can be aided 
using principles from decision analysis

• We identify four challenges to successful proactive 
 management for the salamander chytrid fungus Bsal, 
 including a lack of disease policy, fragmented management 
responsibility, multiple competing objectives, and few 
 effective options for post-emergence control

• Proactive management for emerging diseases requires 
 innovation, confronting perceived constraints, and collabor-
ation to ensure that resources spent on research, monitoring, 
and surveillance are directly linked back to improving 
wildlife populations
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risk of reacting irrationally and  ineffectively (Wilson 
2008). Past experience with human and livestock diseases 
and invasive species demonstrates that acting prior to 
emergence can improve outcomes, and may also reduce 
costs and promote greater efficiency (Fraser et al. 2004). 
The key to successful implementation of such an approach 
is the ability to make predictions (for example, based on 
systematics: Brooks and Hoberg 2006) and to carry out 
adequate surveillance (Machalaba and Karesh 2015).

Batrachochytrium salamandrivorans (Bsal) is a fungal 
pathogen that has recently emerged in Europe (Martel 
et al. 2013, 2014), causing widespread mortality in wild 
and captive salamanders on that continent. Bsal can be 
transmitted through contact with infected individuals or 
substrates, causing skin lesions in infected animals; these 
may result in secondary bacterial infections that lead to 
mortality (Martel et al. 2013). The pathogen is presuma-
bly native to Asia (Martel et al. 2014) and was likely 
introduced into European salamander communities via 
the pet trade (Cunningham et al. 2015), which accord-
ingly poses risks to salamander communities worldwide. 
The eastern US contains the highest diversity of sala-
manders in the world, including 141 species of the 
Plethodontidae, a family that is also potentially suscepti-
ble to Bsal (Martel et al. 2014). Although Bsal is not yet 
present in wild populations of salamanders in North 
America, Martel et al. (2014) demonstrated lethality to 
native US species (Figure 1). If introduced and spread 
throughout the US, Bsal may have devastating conse-
quences for native North American salamanders – similar 
to the amphibian declines caused by the closely related 
Bd pathogen (eg Berger et al. 1998).

Over 28 million amphibians were imported into the US 
over the past decade, including an estimated average of 
426 potentially infectious salamanders imported into the 
US each day (Richgels et al. 2016). Legislation regarding 
importation restrictions was being drafted by the US Fish 
and Wildlife Service (USFWS) prior to June 2015, an 
action also taken by European Union nations 
(Recommendation 176 on the prevention and control of 
the Batrachochytrium salamandrivorans chytrid fungus; 35th 
meeting of the Standing Committee of the Convention 
on the Conservation of European Wildlife and Natural 
Habitats; 1–4 Dec 2015). Finalized in the US in January 
2016 (18 USC 42 §16.14; Interim ruling: injurious wild-
life species; listing salamanders due to risk of salamander 
chytrid fungus), the USFWS rule lists 201 species of sala-
manders as “injurious” to the wildlife or wildlife resources 
of the US under the Lacey Act. To control the introduc-
tion and spread of an injurious species, the Lacey Act 
prohibits the importation and interstate transport of listed 
species without a permit issued by the USFWS. While 
preventing disease introduction during the pre- emergence 
stage is likely the most effective action (Mack et al. 2000), 
this rule, which bans imports and restricts interstate trans-
port of amphibians, may not fully mitigate the risk to 
native US salamander populations. Because prevention 

may not be possible, we considered choices that may arise 
if prevention is unsuccessful. Moreover, there is a cost to 
delaying importation restrictions when pathogens are 
known to be spread via international trade (Yap et al. 
2015). It is therefore also prudent to consider the cost of 
delaying other pre- emergence strategies that may improve 
population resistance or resilience to the introduction of a 
pathogen (Drechsler et al. 2011; Martin et al. 2012).

The optimal allocation of resources to prevention, con-
trol, or mitigation strategies depends on the current infec-
tion status of a site, the near- term potential for infection, 
and the range of predicted impacts (Leung et al. 2005). 
Given that Bsal presents a serious threat to worldwide sal-
amander biodiversity (Martel et al. 2013) and North 
American salamanders are at elevated risk of infection 
(Yap et al. 2015; Richgels et al. 2016), decision makers and 
researchers have a unique opportunity to develop and 
implement preventative management strategies, and to 
devise a plan for responsive, post- emergence actions in 
advance of a wildlife pathogen introduction. Here, we 
used tools from decision analysis to enhance the capacity 
of scientists and resource managers at multiple organiza-
tional levels to frame decisions, identify critical informa-
tion and policy gaps, effectively coordinate actions and 
information sharing, and identify impediments that must 
be overcome for a successful response to Bsal.

 J Confronting emerging wildlife diseases

Decision analysis originated in business and economics 
as a normative (structured) process for rational decision 
making, and has proven particularly useful for problems 
involving multiple objectives and uncertainties (Keeney 
and Raiffa 1993). The decision analysis framework com-
partmentalizes problems into five steps so as to identify 
and reduce impediments to finding solutions: (1) framing 

Figure 1. The eastern newt (Notophthalmus viridescens) is 

broadly distributed throughout eastern North America and is one 

of several species of US amphibians with demonstrated sus-

ceptibility to the Batrachochytrium salamandrivorans (Bsal) 

pathogen.
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the context of the decision, (2) identifying objectives, 
(3) identifying actions that help to achieve objectives, 
(4) predicting the range of consequences of each action 
in terms of the objectives, and (5) evaluating trade- offs 
among objectives to identify optimal actions (Gregory 
et al. 2012). A range of facilitation techniques from 
behavioral decision theory can reduce various sources 
of bias, and counteract perceived constraints to find 
the best management strategy. Furthermore, decision 
analysis involves a range of analytical tools that allow 
decision makers to investigate the role of additional 
information in current and future decision making. When 
information is unavailable, formalized methods can be 
used to elicit expert judgments and identify key research 
priorities to aid future decision making. Importantly, 
decision analysis has already been recognized as a key 
framework for proactive management of wildlife disease 
risks (Cox et al. 2013; Mitchell et al. 2013).

In a workshop setting, we used this approach to begin 
to frame and explore impediments to making decisions 
about Bsal. Workshop participants included scientific 
experts (in fungal pathogen ecology, epidemiology, dis-
ease modeling, amphibian life history, and individual-  
and population- level responses to disease) as well as 
resource managers (responsible for local and regional 
management of amphibian populations and habitats) and 
policy makers (familiar with US federal and state policies 
on importation, biosecurity, and the pet trade). 
Participants were selected to represent a diversity of expe-
rience and had some responsibility for informing and 
carrying out management strategies, enhancing collabo-
rative management, creating links between researchers 
and managers, sharing and synthesizing expert knowl-
edge, and exploring proactive management strategies.

 J Challenges for response development

We identified four major challenges to effectively 
 developing and implementing management strategies 
to prevent Bsal from affecting US salamander popula-
tions, using knowledge gained from US and international 
responses to recent infectious wildlife diseases (eg 
 Bd- induced chytridiomycosis in anurans, Bsal- induced 
die- offs of salamanders in the Netherlands, white nose 
syndrome in bats, and devil facial tumor disease in 
Tasmanian devils). The first is a lack of clear, formal 
legislative and organizational governance to address 
emerging wildlife diseases, which effectively limits the 
range of potential actions that can be considered during 
pre- emergence to mitigate post- emergence impacts. 
While regulatory agencies actively protect the US from 
human pathogens (ie the Centers for Disease Control 
and Prevention) and agricultural threats (ie the US 
Department of Agriculture), federal laws aimed at pro-
tecting amphibians are limited to the Endangered Species 
Act (ESA) of 1973 (which also provides implementation 
of CITES), the Sikes Act of 1960, and the Lacey Act 

(16 USC §§3371–78). Additionally, ESA applies to 
18 species (9%) of salamanders but cannot be used 
to protect species from potential future risks such as 
Bsal; likewise, the Sikes Act applies only to military 
lands, which are managed in cooperation with the 
USFWS and state- level fish and wildlife agencies to 
ensure ecosystem protection, and covers amphibians as 
components thereof. The Lacey Act pertains mainly 
to vertebrate wildlife species (and some invertebrate 
taxa such as crustaceans and mollusks) that have been 
determined to be injurious, rather than to wildlife 
pathogens (eg fungi, bacteria, or viruses). While the 
Lacey Act is one potential regulatory mechanism to 
restrict trade in potentially infected salamanders, it 
cannot be used to restrict hosts of pathogens if the 
host is not determined to be injurious. New legislation 
would be needed to address emerging infectious diseases 
that may harm the health of wildlife populations but 
that do not have any links either to the health of 
agricultural animals or to human health, which are 
covered under existing legislation.

The second challenge involves the responsibility for 
managing salamander species and populations in the US, 
which is fragmented among agencies that have a diverse 
and often limited range of authority to apply manage-
ment actions (Figure 2). Federal agencies manage less 
than one- third of the total US land area (Gorte et al. 
2012) and although several agencies manage millions of 
hectares containing a large diversity of salamanders, most 
responsibility for susceptible species falls to US states. 
States often frame and make decisions about species con-
servation and management independently. The ability 
for managers to rapidly coordinate and communicate 
current and planned actions across organizations and 
regions was considered a critical obstacle to mitigating 
the risk of Bsal. Overcoming this impediment is particu-
larly important when decisions made by one agency influ-
ence another’s ability to successfully implement a man-
agement policy. Using tools from decision analysis, 
natural resource managers can link their actions across 
space and time. Understanding the full range of problems 
associated with making decisions about Bsal across states 
and agencies can provide insights into which require 
joint allocation, in circumstances where one decision and 
outcome will influence another. Additionally, opportuni-
ties for learning across agencies with similar decision- 
making problems can be framed within a formalized 
adaptive management framework (Williams et al. 2009).

The third challenge, often overlooked but critically 
important, is that even if optimal strategies for disease 
management are identified, they may conflict with an 
agency’s other ecological, social, or economic objectives. 
Natural resource agency personnel and policy makers have 
articulated a range of fundamental objectives for mitigat-
ing hazards associated with Bsal (Table 1). These objec-
tives include aspects of salamander conservation, such as 
population persistence and diversity, and aspects of Bsal 
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risk mitigation, such as its presence 
and impact on populations. However, 
other (possibly conflicting) objec-
tives relate to social benefits (eg rec-
reation opportunities on managed 
lands and public use of habitats 
shared by salamanders); economic 
concerns, including ecosystem ser-
vices, management costs, and costs to 
stakeholders (ie those in the amphib-
ian pet trade); and values pertaining 
to other wildlife taxa (eg non- 
salamander species of concern).

While some management actions 
(Table 2) may be effective at reduc-
ing or eliminating Bsal risk prior to 
first detection, natural resource 
agencies may still be hesitant to 
implement these strategies if they 
are perceived to affect other objec-
tives, such as detracting from recrea-
tional opportunities or harming 
other species. Structuring a decision 
analysis involves identifying objec-
tives relevant to each decision 
maker, and allows proposed manage-
ment solutions to be measured 
against the entire set of objectives. 
Because they likely depend on the 
relative importance of each objec-
tive, trade- offs can be identified 
through this type of assessment. 
Using this approach prior to Bsal 
detection can help natural resource 
agencies prepare for difficult decisions (ie trade- offs) or 
employ strategies for minimizing the consequences for 
other objectives. Different agencies may also have non- 
overlapping objectives and may implement actions at 
different spatial scales (from continental to local). Such 
competing interests can make it harder to identify a sin-
gle solution for effective Bsal management, and therefore 
highlights the need for linked and context- dependent 
decision analysis to  evaluate a complex set of potential 
management strategies.

A fourth challenge may remain even after those 
described above have been mitigated: there may be few 
options for management. Uncertainties in the ecology of 
a pathogen may contribute to a lack of viable solutions 
available in advance of a disease  outbreak (Woodhams 
et al. 2011). As uncertainty is a hallmark of emerging 
infectious disease management, or indeed of any resource 
management problem, we devote more attention below 
to the framework for developing and selecting manage-
ment actions in the face of uncertainty.

Figure 2. Fragmented management responsibility for salamander populations in the US 

complicates the coordination of management decisions; state and federal agencies may 

share jurisdiction for areas characterized by high salamander diversity, and also must 

consider other objectives that are locally important but may compete with any Bsal 

management response. Here, we overlay county- level salamander diversity (top right; 

occurrence of 1–30 salamander species) with federal land ownership (bottom left), 

resulting in a small and fragmented federal jurisdiction over management decisions for 

salamander diversity (indicated by numbers of species present on individual protected 

lands: usfs = US Forest Service; nps = National Park Service; fws = US Fish and 

Wildlife Service; blm = Bureau of Land Management) across the US; most management 

decisions for salamander populations are the responsibility of state agencies.

Table 1. Three examples of competing objectives in Bsal management among US agencies

Agency Objective 1 Objective 2

US Fish and Wildlife Service Minimize substantial economic impact to individuals 
related to changes in salamander imports and pet 
trade policy

Restrict international trade and interstate 
movement of salamanders to mitigate risk 
of importation of Bsal

US Department of Defense Conservation of salamander populations (minimize 
need for listing salamander species under the 
Endangered Species Act [ESA])

Maintain ability to conduct military 
training and mission- critical operations

US National Park Service Conservation of salamander populations (including 
those listed under the ESA)

Maintain natural ecosystem processes
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 J Developing management strategies despite 

uncertainty

Disease management requires acting with imperfect in-
formation. Deliberately including uncertainties into the 
evaluation of alternative strategies can greatly improve 
the identification of robust alternatives (Regan et al. 
2005). We framed decisions within a conceptual model 
of disease emergence and impacts on salamander pop-
ulations. By using this model, we were able to char-
acterize the uncertainties expected to influence the 
successful implementation of a variety of potential pro-
active management strategies. The resulting influence 
diagram considered two immediately salient and 
 potentially competing objectives of the USFWS (per-
sistence of salamanders and economic costs; Figure 3). 
The diagram included four operational steps for disease 
emergence: pre- emergence, emergence, epidemic, and 
establishment, as in Langwig et al. (2015). Researchers 
and managers jointly built an influence diagram for 
each stage of Bsal emergence to capture the factors 
that influence salamander population responses to the 
disease. Management actions that influenced each factor 
were then added as an example of how management 
strategies (which could consist of simultaneous or 

 coordinated actions) could be developed and formally 
evaluated. Potential actions were generated and separated 
into general categories of actions and stage of emergence 
where the action would be appropriate (Table 2) based 
on experiences across agent types, affected taxa, and 
environmental conditions. The relative effectiveness of 
each action and the experts’ confidence in the efficacy 
of each action was formally elicited.

However, these actions are context- specific and do not 
necessarily represent the best action in every situation. 
To help devise innovative actions relevant to various 
management contexts, we used formal elicitation meth-
ods that identified research needs at population, commu-
nity, and habitat scales. These included: (1) developing 
additional diagnostic and detection methods for Bsal (eg 
in environmental samples); (2) assessing the susceptibil-
ity of additional potential hosts, including vertebrates 
other than salamanders; (3) identifying the transmission 
pathways to focus control efforts; (4) developing and 
evaluating the effectiveness of short- term containment 
measures (such as site isolation and local treatment); and 
(5) long- term strategies to promote host–pathogen coex-
istence (such as breeding for resistance or tolerance).

Experts at the workshop also recognized that a single 
action will most likely not be effective in managing Bsal 

Table 2. List of potential action categories considered during each stage of pathogen emergence, with their  expected 
level of effectiveness and confidence in that effectiveness

Potential action category

Stage of emergence Expected  
relative 

effectiveness

Relative  
confidence in 
effectivenessP E Ep Es

Containment of infected sites X X X Low Low

Alter host species composition X X Low Low

Apply anti- fungal agents to salamanders X X Low High

Remove susceptible and tolerant  salamanders from infected sites X X Low High

Limit site access (by humans and other vertebrates) X X X X Low High

Quarantine salamanders X X X Moderate Low

Require health certification X X Moderate Low

Apply anti- fungal agents to habitats X X Moderate Low

Vaccinate salamanders X X Moderate Low

Apply probiotics to salamanders X X Moderate Low

Physical modification of habitat X X X X Moderate Moderate

Enforce fieldwork biosecurity X X X Moderate High

Create assurance colonies X X Moderate High

Breed salamanders for resistance and/or tolerance X High Low

Deploy Bsal zoospore removal methods X X X X High Low

Enact legislation that authorizes actions on wildlife pathogens X High Low

Ban all importation of salamanders X X X High Moderate

Restrict salamander trade X X X High Moderate

Destroy habitats of infected sites X X X High Moderate

Notes: P = Pre- emergence, E = Emergence, Ep = Epidemic, and Es = Establishment. Expectations were elicited using the expert opinions of six groups of participants (each 
composed of approximately five individuals) during the workshop.
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and its effects on populations, and 
that, ultimately, response strategies 
are more likely to represent combi-
nations of actions, depending on the 
decision context and its constraints. 
For example, we used a simplified 
“Bayesian belief network” (BBN; 
Marcot et al. 2006), a tool from deci-
sion analysis, to formalize how the 
impact of Bsal emergence is condi-
tional on the probability of spread, 
which in turn is conditional on the 
probability of entry (Figure 4). 
Specific management actions may 
be aimed at modifying those proba-
bilities. In this example, regulating 
trade can change the probability of 
entry, and therefore the probability 
of spread, whereas containment 
efforts may change the probability of 
spread without affecting entry. 
Expanding this BBN will allow us to 
explicitly identify and characterize 
these linked decisions. Graphical 
decision aids, such as influence dia-
grams and BBNs, can be scaled to 
reflect the different actions available 
to management agencies, relevant 
uncertainties and hypotheses, 
diverse management objectives, and 
the spatial (local, state, region) and temporal (short- , 
medium- , long- term) dimensions of disease management 
responses.

Optimal management strategies may change as uncer-
tainties are reduced through monitoring and/or research, 
which should target the uncertainties that most affect the 
choice of preferred management actions. Reducing uncer-
tainty increases the ability to predict and attain desired 
outcomes (Runge et al. 2011). Moreover, actions are likely 
to be initiated at different stages of disease emergence 
(Langwig et al. 2015). Stages may be imperfectly observed 
but may be identified, for example, by the first detection of 
the pathogen (at a continental or local scale), or by the 
first detection of population declines or die- offs. 
Information about the state of the system (ie gathered by 
surveillance) is therefore vital and should be clearly linked 
to management actions and objectives so that it is used as 
efficiently as possible (Lyons et al. 2008).

  J Conclusions

With the advance knowledge of the threat posed by 
Bsal to US salamander species, scientists have a unique 
opportunity to address the introduction, spread, effects, 
and control strategies for a novel infectious disease 
before widespread declines occur. Decision analysis offers 
a wide range of tools that can address the challenges 

that are identified within an explicit and transparent 
framework (Keeney and Raiffa 1993). Specific man-
agement problems were not evaluated during this work-
shop. However, natural resource agencies and policy 
makers will be able to employ the principles of decision 
analysis and build on the range of objectives, concep-
tual models, and uncertainties identified in order to 
facilitate the framing of Bsal decision problems and to 
explore proactive management strategies. The oppor-
tunity to actively manage populations ahead of epidemics 
is a notable hallmark of the Bsal threat, which may 
serve as an example in developing responses to future 
emerging infectious diseases. Evaluating and implement-
ing strategies for Bsal and other emerging infectious 
wildlife diseases may require new approaches, since 
proactive management of populations and habitats 
(which might result in suboptimal outcomes at present) 
seeks to mitigate a disease threat that has not yet 
emerged. This differs from the “dual control” problem 
in adaptive management where managers choose strat-
egies to  optimize outcomes both now and in the future 
(eg by learning about system controls; Walters and 
Hilborn 1978). Given the degree of uncertainty that 
characterizes management of emerging infectious dis-
eases, using a formal adaptive management framework 
may also be desirable, because it could provide insights 
into mitigating local disease risk while also maximizing 

Figure 3. Simplified prototype influence diagram that links potential management actions 

(green rectangles) and abiotic and biotic factors affecting disease and amphibian processes 

(red ovals represent stochastic events, white ovals represent contributing processes) to two 

fundamental management objectives (red hexagons): persistence of salamanders and 

economic impacts of management actions, which are used as examples here but would be 

expanded to include all objectives of each local decision maker. Outcomes of a chosen set 

of management actions may lead to positive or negative outcomes for the objectives. For 

example, regulating trade may reduce profits for some segments of the pet trade but create 

new markets for within- state salamander trade, while anti- fungal treatments may improve 

the persistence outcomes for some species but not others.
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the opportunity to learn about the disease and improve 
future management (Williams et al. 2009).
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