Header

UZH-Logo

Maintenance Infos

What do isogamous organisms teach us about sex and the two sexes?


Lehtonen, Jussi; Kokko, Hanna; Parker, Geoff A (2016). What do isogamous organisms teach us about sex and the two sexes? Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences, 371(1706):20150532.

Abstract

Isogamy is a reproductive system where all gametes are morphologically similar, especially in terms of size. Its importance goes beyond specific cases: to this day non-anisogamous systems are common outside of multicellular animals and plants, they can be found in all eukaryotic super-groups, and anisogamous organisms appear to have isogamous ancestors. Furthermore, because maleness is synonymous with the production of small gametes, an explanation for the initial origin of males and females is synonymous with understanding the transition from isogamy to anisogamy. As we show here, this transition may also be crucial for understanding why sex itself remains common even in taxa with high costs of male production (the twofold cost of sex). The transition to anisogamy implies the origin of male and female sexes, kickstarts the subsequent evolution of sex roles, and has a major impact on the costliness of sexual reproduction. Finally, we combine some of the consequences of isogamy and anisogamy in a thought experiment on the maintenance of sexual reproduction. We ask what happens if there is a less than twofold benefit to sex (not an unlikely scenario as large short-term benefits have proved difficult to find), and argue that this could lead to a situation where lineages that evolve anisogamy-and thus the highest costs of sex-end up being associated with constraints that make invasion by asexual reproduction unlikely (the 'anisogamy gateway' hypothesis).This article is part of the themed issue 'Weird sex: the underappreciated diversity of sexual reproduction'.

Abstract

Isogamy is a reproductive system where all gametes are morphologically similar, especially in terms of size. Its importance goes beyond specific cases: to this day non-anisogamous systems are common outside of multicellular animals and plants, they can be found in all eukaryotic super-groups, and anisogamous organisms appear to have isogamous ancestors. Furthermore, because maleness is synonymous with the production of small gametes, an explanation for the initial origin of males and females is synonymous with understanding the transition from isogamy to anisogamy. As we show here, this transition may also be crucial for understanding why sex itself remains common even in taxa with high costs of male production (the twofold cost of sex). The transition to anisogamy implies the origin of male and female sexes, kickstarts the subsequent evolution of sex roles, and has a major impact on the costliness of sexual reproduction. Finally, we combine some of the consequences of isogamy and anisogamy in a thought experiment on the maintenance of sexual reproduction. We ask what happens if there is a less than twofold benefit to sex (not an unlikely scenario as large short-term benefits have proved difficult to find), and argue that this could lead to a situation where lineages that evolve anisogamy-and thus the highest costs of sex-end up being associated with constraints that make invasion by asexual reproduction unlikely (the 'anisogamy gateway' hypothesis).This article is part of the themed issue 'Weird sex: the underappreciated diversity of sexual reproduction'.

Statistics

Citations

Dimensions.ai Metrics
34 citations in Web of Science®
33 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

25 downloads since deposited on 30 May 2017
5 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:07 Faculty of Science > Institute of Evolutionary Biology and Environmental Studies
Dewey Decimal Classification:570 Life sciences; biology
590 Animals (Zoology)
Scopus Subject Areas:Life Sciences > General Biochemistry, Genetics and Molecular Biology
Life Sciences > General Agricultural and Biological Sciences
Language:English
Date:June 2016
Deposited On:30 May 2017 13:19
Last Modified:26 Jan 2022 12:58
Publisher:Royal Society Publishing
ISSN:0962-8436
OA Status:Hybrid
Free access at:PubMed ID. An embargo period may apply.
Publisher DOI:https://doi.org/10.1098/rstb.2015.0532
PubMed ID:27619696
  • Content: Published Version