Abstract
The classic brown body (bwb) mutation in the housefly Musca domestica impairs normal melanization of the adult cuticle. In Drosophila melanogaster, a reminiscent pigmentation defect results from mutations in the yellow gene encoding dopachrome conversion enzyme (DCE). Here, we demonstrate that the bwb locus structurally and functionally represents the yellow ortholog of Musca domestica, MdY. In bwb Musca strains, we identified two mutant MdY alleles that contain lesions predicted to result in premature truncation of the MdY open reading frame. We targeted wildtype MdY by CRISPR-Cas9 RNPs and generated new mutant alleles that fail to complement existing MdY alleles, genetically confirming that MdY is the bwb locus. We further found evidence for Cas9-mediated interchromosomal recombination between wildtype and mutant bwb alleles. Our work resolves the molecular identity of the classic bwb mutation in Musca domestica and establishes the feasibility of Cas9-mediated genome editing in the Musca model.