Abstract
OBJECTIVE To compare stiffness and resistance to cyclic fatigue of two 3.5-mm locking system plate-rod constructs applied to an experimentally created fracture gap in femurs of canine cadavers.
SAMPLE 20 femurs from cadavers of 10 mixed-breed adult dogs.
PROCEDURES 1 femur from each cadaver was stabilized with a conical coupling plating system-rod construct, and the contralateral femur was stabilized with a locking compression plate (LCP)-rod construct. An intramedullary Steinmann pin was inserted in each femur. A 40-mm gap then was created; the gap was centered beneath the central portion of each plate. Cyclic axial loading with increasing loads was performed. Specimens that did not fail during cyclic loading were subjected to an acute load to failure.
RESULTS During cyclic loading, significantly more LCP constructs failed (6/10), compared with the number of conical coupling plating system constructs that failed (1/10). Mode of failure of the constructs included fracture of the medial or caudal aspect of the cortex of the proximal segment with bending of the plate and pin, bending of the plate and pin without fracture, and screw pullout. Mean stiffness, yield load, and load to failure were not significantly different between the 2 methods of stabilization.
CONCLUSIONS AND CLINICAL RELEVANCE Both constructs had similar biomechanical properties, but the conical coupling plating system was less likely to fail than was the LCP system when subjected to cyclic loading. These results should be interpreted with caution because testing was limited to a single loading mode.