Abstract
Transport of objects is a major application in robotics nowadays. While ground robots can carry heavy payloads for long distances, they are limited in rugged terrains. Aerial robots can deliver objects in arbitrary terrains; however they tend to be limited in payload. It has been previously shown that, for heavy payloads, it can be beneficial to carry them using multiple flying robots. In this paper, we propose a novel collaborative transport scheme, in which two quadrotors transport a cable-suspended payload at accelerations that exceed the capabilities of previous collaborative approaches, which make quasi-static assumptions. Furthermore, this is achieved completely without explicit communication between the collaborating robots, making our system robust to communication failures and making consensus on a common reference frame unnecessary. Instead, they only rely on visual and inertial cues obtained from on-board sensors. We implement and validate the proposed method on a real system.