Header

UZH-Logo

Maintenance Infos

Type III CRISPR-Cas systems produce cyclic oligoadenylate second messengers


Niewoehner, Ole; Garcia-Doval, Carmela; Rostøl, Jakob T; Berk, Christian; Schwede, Frank; Bigler, Laurent; Hall, Jonathan; Marraffini, Luciano A; Jinek, Martin (2017). Type III CRISPR-Cas systems produce cyclic oligoadenylate second messengers. Nature, 548(7669):543-548.

Abstract

In many prokaryotes, type III clustered regularly interspaced short palindromic repeat (CRISPR)-CRISPR-associated (Cas) systems detect and degrade invasive genetic elements by an RNA-guided, RNA-targeting multisubunit interference complex. The CRISPR-associated protein Csm6 additionally contributes to interference by functioning as a standalone RNase that degrades invader RNA transcripts, but the mechanism linking invader sensing to Csm6 activity is not understood. Here we show that Csm6 proteins are activated through a second messenger generated by the type III interference complex. Upon target RNA binding by the interference complex, its Cas10 subunit converts ATP into a cyclic oligoadenylate product, which allosterically activates Csm6 by binding to its CRISPR-associated Rossmann fold (CARF) domain. CARF domain mutations that abolish allosteric activation inhibit Csm6 activity in vivo, and mutations in the Cas10 Palm domain phenocopy loss of Csm6. Together, these results point to an unprecedented mechanism for regulation of CRISPR interference that bears striking conceptual similarity to oligoadenylate signalling in mammalian innate immunity.

Abstract

In many prokaryotes, type III clustered regularly interspaced short palindromic repeat (CRISPR)-CRISPR-associated (Cas) systems detect and degrade invasive genetic elements by an RNA-guided, RNA-targeting multisubunit interference complex. The CRISPR-associated protein Csm6 additionally contributes to interference by functioning as a standalone RNase that degrades invader RNA transcripts, but the mechanism linking invader sensing to Csm6 activity is not understood. Here we show that Csm6 proteins are activated through a second messenger generated by the type III interference complex. Upon target RNA binding by the interference complex, its Cas10 subunit converts ATP into a cyclic oligoadenylate product, which allosterically activates Csm6 by binding to its CRISPR-associated Rossmann fold (CARF) domain. CARF domain mutations that abolish allosteric activation inhibit Csm6 activity in vivo, and mutations in the Cas10 Palm domain phenocopy loss of Csm6. Together, these results point to an unprecedented mechanism for regulation of CRISPR interference that bears striking conceptual similarity to oligoadenylate signalling in mammalian innate immunity.

Statistics

Citations

Dimensions.ai Metrics
248 citations in Web of Science®
267 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

2 downloads since deposited on 26 Sep 2017
0 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > Department of Biochemistry
07 Faculty of Science > Department of Biochemistry
Dewey Decimal Classification:570 Life sciences; biology
610 Medicine & health
Scopus Subject Areas:Health Sciences > Multidisciplinary
Language:English
Date:31 August 2017
Deposited On:26 Sep 2017 14:35
Last Modified:26 Jan 2022 13:36
Publisher:Nature Publishing Group
ISSN:0028-0836
OA Status:Closed
Publisher DOI:https://doi.org/10.1038/nature23467
PubMed ID:28722012