Header

UZH-Logo

Maintenance Infos

Technique of minimally invasive transverse aortic constriction in mice for induction of left ventricular hypertrophy


Tavakoli, Reza; Nemska, Simona; Jamshidi, Peiman; Gassmann, Max; Frossard, Nelly (2017). Technique of minimally invasive transverse aortic constriction in mice for induction of left ventricular hypertrophy. Journal of Visualized Experiments (Jove), (127):e56231.

Abstract

Transverse aortic constriction (TAC) in mice is one of the most commonly used surgical techniques for experimental investigation of pressure overload-induced left ventricular hypertrophy (LVH) and its progression to heart failure. In the majority of the reported investigations, this procedure is performed with intubation and ventilation of the animal which renders it demanding and time-consuming and adds to the surgical burden to the animal. The aim of this protocol is to describe a simplified technique of minimally invasive TAC without intubation and ventilation of mice. Critical steps of the technique are emphasized in order to achieve low mortality and high efficiency in inducing LVH. Male C57BL/6 mice (10-week-old, 25-30 g, n=60) were anesthetized with a single intraperitoneal injection of a mixture of ketamine and xylazine. In a spontaneously breathing animal following a 3-4 mm upper partial sternotomy, a segment of 6/0 silk suture threaded through the eye of a ligation aid was passed under the aortic arch and tied over a blunted 27-gauge needle. Sham-operated animals underwent the same surgical preparation but without aortic constriction. The efficacy of the procedure in inducing LVH is attested by a significant increase in the heart/body weight ratio. This ratio is obtained at days 3, 7, 14 and 28 after surgery (n = 6 - 10 in each group and each time point). Using our technique, LVH is observed in TAC compared to sham animals from day 7 through day 28. Operative and late (over 28 days) mortalities are both very low at 1.7%. In conclusion, our cost-effective technique of minimally invasive TAC in mice carries very low operative and post-operative mortalities and is highly efficient in inducing LVH. It simplifies the operative procedure and reduces the strain put on the animal. It can be easily performed by following the critical steps described in this protocol.

Abstract

Transverse aortic constriction (TAC) in mice is one of the most commonly used surgical techniques for experimental investigation of pressure overload-induced left ventricular hypertrophy (LVH) and its progression to heart failure. In the majority of the reported investigations, this procedure is performed with intubation and ventilation of the animal which renders it demanding and time-consuming and adds to the surgical burden to the animal. The aim of this protocol is to describe a simplified technique of minimally invasive TAC without intubation and ventilation of mice. Critical steps of the technique are emphasized in order to achieve low mortality and high efficiency in inducing LVH. Male C57BL/6 mice (10-week-old, 25-30 g, n=60) were anesthetized with a single intraperitoneal injection of a mixture of ketamine and xylazine. In a spontaneously breathing animal following a 3-4 mm upper partial sternotomy, a segment of 6/0 silk suture threaded through the eye of a ligation aid was passed under the aortic arch and tied over a blunted 27-gauge needle. Sham-operated animals underwent the same surgical preparation but without aortic constriction. The efficacy of the procedure in inducing LVH is attested by a significant increase in the heart/body weight ratio. This ratio is obtained at days 3, 7, 14 and 28 after surgery (n = 6 - 10 in each group and each time point). Using our technique, LVH is observed in TAC compared to sham animals from day 7 through day 28. Operative and late (over 28 days) mortalities are both very low at 1.7%. In conclusion, our cost-effective technique of minimally invasive TAC in mice carries very low operative and post-operative mortalities and is highly efficient in inducing LVH. It simplifies the operative procedure and reduces the strain put on the animal. It can be easily performed by following the critical steps described in this protocol.

Statistics

Citations

Dimensions.ai Metrics
22 citations in Web of Science®
28 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

314 downloads since deposited on 17 Oct 2017
79 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > Center for Integrative Human Physiology
05 Vetsuisse Faculty > Institute of Veterinary Physiology
Dewey Decimal Classification:570 Life sciences; biology
Scopus Subject Areas:Life Sciences > General Neuroscience
Physical Sciences > General Chemical Engineering
Life Sciences > General Biochemistry, Genetics and Molecular Biology
Life Sciences > General Immunology and Microbiology
Language:English
Date:25 September 2017
Deposited On:17 Oct 2017 15:46
Last Modified:22 Nov 2023 08:17
Publisher:Journal of Visualized Experiments
ISSN:1940-087X
OA Status:Green
Free access at:PubMed ID. An embargo period may apply.
Publisher DOI:https://doi.org/10.3791/56231
PubMed ID:28994784
  • Content: Published Version
  • Language: English