Header

UZH-Logo

Maintenance Infos

Dopamine acutely stimulates Na+/H+ exchanger (NHE3) endocytosis via clathrin-coated vesicles: dependence on protein kinase A-mediated NHE3 phosphorylation.


Hu, M C; Fan, L; Crowder, L A; Karim-Jimenez, Z; Murer, H; Moe, O W (2001). Dopamine acutely stimulates Na+/H+ exchanger (NHE3) endocytosis via clathrin-coated vesicles: dependence on protein kinase A-mediated NHE3 phosphorylation. Journal of Biological Chemistry, 276(29):26906-26915.

Abstract

Dopamine (DA) is a key hormone in mammalian sodium homeostasis. DA induces natriuresis via acute inhibition of the renal proximal tubule apical membrane Na(+)/H(+) exchanger NHE3. We examined the mechanism by which DA inhibits NHE3 in a renal cell line. DA acutely decreases surface NHE3 antigen in dose- and time-dependent fashion without altering total cellular NHE3. Although DA(1) receptor agonist alone decreases surface NHE3, simultaneous DA(2) agonist synergistically enhances the effect of DA(1). Decreased surface NHE3 antigen, caused by stimulation of NHE3 endocytosis, is dependent on intact functioning of the GTPase dynamin and involves increased binding of NHE3 to the adaptor protein AP2. DA-stimulated NHE3 endocytosis can be blocked by pharmacologic or genetic protein kinase A inhibition or by mutation of two protein kinase A target serines (Ser-560 and Ser-613) on NHE3. We conclude that one mechanism by which DA induces natriuresis is via protein kinase A-mediated phosphorylation of proximal tubule NHE3 leading to endocytosis of NHE3 via clathrin-coated vesicles.

Abstract

Dopamine (DA) is a key hormone in mammalian sodium homeostasis. DA induces natriuresis via acute inhibition of the renal proximal tubule apical membrane Na(+)/H(+) exchanger NHE3. We examined the mechanism by which DA inhibits NHE3 in a renal cell line. DA acutely decreases surface NHE3 antigen in dose- and time-dependent fashion without altering total cellular NHE3. Although DA(1) receptor agonist alone decreases surface NHE3, simultaneous DA(2) agonist synergistically enhances the effect of DA(1). Decreased surface NHE3 antigen, caused by stimulation of NHE3 endocytosis, is dependent on intact functioning of the GTPase dynamin and involves increased binding of NHE3 to the adaptor protein AP2. DA-stimulated NHE3 endocytosis can be blocked by pharmacologic or genetic protein kinase A inhibition or by mutation of two protein kinase A target serines (Ser-560 and Ser-613) on NHE3. We conclude that one mechanism by which DA induces natriuresis is via protein kinase A-mediated phosphorylation of proximal tubule NHE3 leading to endocytosis of NHE3 via clathrin-coated vesicles.

Statistics

Citations

Dimensions.ai Metrics
121 citations in Web of Science®
143 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

115 downloads since deposited on 11 Feb 2008
4 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > Institute of Physiology
07 Faculty of Science > Institute of Physiology
Dewey Decimal Classification:570 Life sciences; biology
Scopus Subject Areas:Life Sciences > Biochemistry
Life Sciences > Molecular Biology
Life Sciences > Cell Biology
Language:English
Date:20 July 2001
Deposited On:11 Feb 2008 12:23
Last Modified:24 Jun 2022 08:29
Publisher:American Society for Biochemistry and Molecular Biology
ISSN:0021-9258
Additional Information:This research was originally published in Hu, M C; Fan, L; Crowder, L A; Karim-Jimenez, Z; Murer, H; Moe, O W. Dopamine acutely stimulates Na+/H+ exchanger (NHE3) endocytosis via clathrin-coated vesicles: dependence on protein kinase A-mediated NHE3 phosphorylation. J. Biol. Chem. 2001, 276(29):26906-15. © the American Society for Biochemistry and Molecular Biology.
OA Status:Hybrid
Free access at:Publisher DOI. An embargo period may apply.
Publisher DOI:https://doi.org/10.1074/jbc.M011338200
PubMed ID:11328806
  • Content: Accepted Version