Header

UZH-Logo

Maintenance Infos

Assessment of simpler calibration models in the development and validation of a fast postmortem multi-analyte LC-QTOF quantitation method in whole blood with simultaneous screening capabilities using SWATH acquisition


Elmiger, Marco P; Poetzsch, Michael; Steuer, Andrea E; Kraemer, Thomas (2017). Assessment of simpler calibration models in the development and validation of a fast postmortem multi-analyte LC-QTOF quantitation method in whole blood with simultaneous screening capabilities using SWATH acquisition. Analytical and Bioanalytical Chemistry, 409(27):6495-6508.

Abstract

In postmortem toxicology, fast methods can provide a triage to avoid unnecessary autopsies. Usually, this requires multiple qualitative and quantitative analytical methods. The aim of the present study was to develop a postmortem LC-QTOF method for simultaneous screening and quantitation using easy sample preparation and reduced alternative calibration models. Hence, a method for 24 highly relevant substances in forensic toxicology was fully validated using the following calibration models: one-point external, one-point internal via corresponding deuterated standards, multi-point external daily calibration, and multi-point external weekly calibration. Two hundred microliters of postmortem blood were spiked with internal deuterated standard mixture and extracted by acetonitrile protein precipitation. Analysis was performed on a Sciex 6600 QTOF instrument with ESI+ mode using data-independent acquisition (DIA) namely sequential window acquisition of all theoretical mass spectra (SWATH). Validation of the different calibration models included selectivity, autosampler stability, recovery, matrix effects, accuracy, and precision for 24 substances. In addition, corresponding deuterated analogs of 52 substances were included to the internal standard mix for semi-quantitative concentration assessment. The simple protein precipitation provided recoveries higher than 55 and 75% for all analytes at low and high concentrations, respectively. Accuracy and precision criteria (bias and imprecision ± 15 and ± 20% near the limit of quantitation) were fulfilled by the different calibration models for most analytes. The validated method was successfully applied to more than 100 authentic postmortem samples and 3 proficiency tests. Furthermore, the one-point internal calibration via corresponding deuterated standard proved to be a considerably time saving technique for 76 analytes.

Abstract

In postmortem toxicology, fast methods can provide a triage to avoid unnecessary autopsies. Usually, this requires multiple qualitative and quantitative analytical methods. The aim of the present study was to develop a postmortem LC-QTOF method for simultaneous screening and quantitation using easy sample preparation and reduced alternative calibration models. Hence, a method for 24 highly relevant substances in forensic toxicology was fully validated using the following calibration models: one-point external, one-point internal via corresponding deuterated standards, multi-point external daily calibration, and multi-point external weekly calibration. Two hundred microliters of postmortem blood were spiked with internal deuterated standard mixture and extracted by acetonitrile protein precipitation. Analysis was performed on a Sciex 6600 QTOF instrument with ESI+ mode using data-independent acquisition (DIA) namely sequential window acquisition of all theoretical mass spectra (SWATH). Validation of the different calibration models included selectivity, autosampler stability, recovery, matrix effects, accuracy, and precision for 24 substances. In addition, corresponding deuterated analogs of 52 substances were included to the internal standard mix for semi-quantitative concentration assessment. The simple protein precipitation provided recoveries higher than 55 and 75% for all analytes at low and high concentrations, respectively. Accuracy and precision criteria (bias and imprecision ± 15 and ± 20% near the limit of quantitation) were fulfilled by the different calibration models for most analytes. The validated method was successfully applied to more than 100 authentic postmortem samples and 3 proficiency tests. Furthermore, the one-point internal calibration via corresponding deuterated standard proved to be a considerably time saving technique for 76 analytes.

Statistics

Citations

Dimensions.ai Metrics
1 citation in Web of Science®
1 citation in Scopus®
Google Scholar™

Altmetrics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > Institute of Legal Medicine
Dewey Decimal Classification:340 Law
610 Medicine & health
Language:English
Date:2017
Deposited On:02 Nov 2017 14:07
Last Modified:19 Feb 2018 09:07
Publisher:Springer
ISSN:1618-2642
OA Status:Closed
Publisher DOI:https://doi.org/10.1007/s00216-017-0594-1

Download

Full text not available from this repository.
View at publisher

Get full-text in a library