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Abstract

Human brain electric activity can be measured gh hemporal and fairly good spatial resolution via
electroencephalography (EEG). The EEG microstasdysis is an increasingly popular method used to
investigate this activity at a millisecond resabati by segmenting it into quasi-stable states of
approximately 100 ms duration. These so-called EBfiGostates were postulated to represent atoms of
thoughts and emotions and can be classified intodtasses of topographies A through D, which &rpla
up to 90 % of the variance of continuous EEG. Ties@nt study investigated whether these topographie
are primarily driven by alpha activity originatifigom the posterior cingulate cortex (all topogras)j

left and right posterior cortices, and the antetiagulate cortex (topographies A, B, and C, retpely).

We analyzed two 64-channel resting state EEG datgde=61 and N=78) of healthy participants.
Sources of head-surface signals were determine@éxaat low resolution electromagnetic tomography
(eLORETA). The Hilbert transformation was applieditdientify instantaneous source strength of four
EEG frequency bands (delta through beta). Thesecsostrength values were averaged for each
participant across time periods belonging to ai@agr microstate. For each dataset, these avemdges
the different microstate classes were compareddoh voxel. Consistent differences across datessts

identified via a conjunction analysis.



The intracortical strength and spatial distributimhalpha band activity mainly determined whether a
head-surface topography of EEG microstate clad3, &, or D was induced. EEG microstate class C was
characterized by stronger alpha activity compacedltother classes in large portions of the cor@ass

A was associated with stronger left posterior alpletivity than classes B and D, and class B was

associated with stronger right posterior alphavigtthan A and D.

Previous results indicated that EEG microstate ohyos reflect a fundamental mechanism of the human
brain that is altered in different mental statet@alth and disease. They are characterized bgragsic
transitions between four head-surface topograpliies EEG microstate classes. Our results show that
intra-cortical alpha oscillations, which likely et decreased cortical excitability, primarily aocat for
the emergence of these classes. We suggest thratstaie class dynamics reflect transitions betveen

global attractor states that are characterizecel®c8ve inhibition of specific intra-cortical remis.
Keywords

EEG, microstates, LORETA, source localization, fioral significance, default mode network

1. Introduction

Human brain electric activity can be obtained high temporal and at a fairly good spatial resolutiia
electroencephalography (EEG). Continuous EEG daag be analyzed based on a wide range of
methods. The EEG microstate analysis has gainedasing popularity (Khanna et al., 2015; Koenig and
Brandeis, 2016; Mégevand et al., 2008; Pedroni.e2816; Pipinis et al., 2016) in recent yearsislt
particularly attractive for the investigation ofgrétive and emotional brain processes (LehmannQ}199
since it can identify discontinuous, non-linear rdp@s of global functional brain states at a veghhi
temporal resolution (e.g. Lehmann et al., 1987;mhahn et al., 2010).

The EEG microstate analysis inspects the topograjhthe head-surface potential changes of brain
electric activity at a millisecond resolution (Kagret al., 2002). This procedure has already yatlde
fundamental insights into human brain functionikgstly, it revealed that the brain’s electric it
distribution does not change continuously with tiroet in discrete steps. One head-surface topograph
does not transform smoothly into another but stpyasi-stable for a period of approximately 80-120 m
and then abruptly changes to another topographiyniieen et al., 1987; Lehmann et al., 2009; Lehmann
and Skrandies, 1980; Michel et al., 2009). Secqritlisevealed that up to 90 % of the variance &f th
electric potential changes identified via EEG dgrayes closed resting can be explained by transitio
between only four head-surface topographies (Khatred., 2014; Koenig et al., 2002; Wackermann et



al.,, 1993). These four primary head-surface topuges may represent global brain electric attractor

states that the brain transitions into systemdgidalany individual.

These four characteristic EEG topographies have bgacted consistently across studies via differe
procedures and clustering algorithms (e.g. Khartnal.e 2014; Pascual-Marqui et al., 2014; Pascual-
Marqui et al., 1995). By convention, the four topmghies were labeled EEG microstate classes A to D
(Koenig et al., 2002, see Figure 1). They were rkaidy similar in health and disease, different age
groups, and during different mental states (restiagk, sleep) (Britz et al., 2010; Brodbeck et 2012;
Faber et al., 2014; Kindler et al., 2011; Koeniglet2002; Milz et al., 2016a; Schlegel et al.120

Figure 1 about here

However, unlike the topography, the occurrencejdemcy, and sequential order of these EEG miceostat
classes profoundly varied in different populatiamsl mental states. For example, microstate clasasA
more, class D less prominent in patients and niskigs of several mental disorders compared to nealt
controls (Andreou et al., 2014; Faber et al., ieparation; Koenig, 2016; Koenig et al., 1999; Lehmat

al., 2005; Milz, 2016; Nishida et al., 2013; Riegerl., 2016; Strelets et al., 2003; Tomescu.epall 4).
The length of microstate classes A and B shortemetthe occurrence of class C increased with age in
the awake eyes closed resting state (Koenig e2@02). The mean duration of all classes was |lamgtti
during deep sleep (Brodbeck et al., 2012). Claskition was longer during meditation (Faber et al.
2005) and healthy controls showed a preferred rsiate sequence (A-C-D-A) that was reversed in
schizophrenic patients (A-D-C-A) (Lehmann et al02).

Apparently, several EEG microstate parameters arsistently altered in particular populations and
particular mental states. However, the functionétrpretation of these alterations has provencdiltfi
Based on their unique properties, the EEG micrestaive been postulated to represent the atoms of
thoughts and emotions (Lehmann, 1993). Howevefas®mo conclusive functional implications can be
made on what it means when the occurrence andheoduration of the microstates of a particulassla
are altered. The functional significance, thathis imental process the EEG microstate classes aird th
concatenations relate to, has been addressedvioysestudies, but has not yet been clearly estadsdi
(Britz et al., 2010; Milz et al., 2016a; Seitzmarak, 2016).

A promising approach to learn more about the faameti significance of the EEG microstate classdhén
brain is to identify and infer potential functiofrem their cortical sources. The cortical sourckbenad-



surface recorded EEG can be identified via souscaliization algorithms such as exact Low Resolution
Electromagnetic Tomography (eLORETA: Pascual-Marc@®07). A previous study applied this
approach to EEG microstate class topographies cmtpaased on a broad band of 2-20 Hz (Pascual-
Marqui et al., 2014). It revealed that the four EE®rostate classes have a common source in the
posterior cingulate and additional sources in #fiedccipital/parietal, right occipital/parietah@anterior
cingulate cortices for microstate classes A throGghiespectively (Pascual-Marqui et al., 2014). Sehe

sources corresponded to the four main hubs of #talolic default mode network (Raichle et al., 2001

Thus, it was suggested that the default mode n&tway not be characterized by simultaneous activity
in different brain regions but temporally distirettivations of different network components tha ar
blurred by the low temporal resolution in fMRI (aal-Marqui et al., 2014). Consequently, the terapor
dynamics of the four EEG microstate classes mighect a high-level brain process that activates /an
or deactivates these four default mode network hepsatedly with various durations, frequency, i#nd
different sequences. Moreover, the large proportibuwariance explained by the four microstate dass
suggests that this dynamic may be the most proricemponent of brain electric activity as measured

via continuous EEG recordings altogether.

However, two important pieces of information canbetderived from the above study. Firstly, it remsai
unclear whether the microstate class transitiorfleate systematic sequences of activation and/or
deactivation of these default mode network hubsoBdly, it remains unclear whether the microstate
classes are solely driven by the reported souncesdether additional sources contribute that maymay

not systematically differ between classes.

The first point relates to the question whetherdbsical activity distributions that give rise tioe four
microstate class topographies rely on excitatorinbibitory brain electric activity or a combinatiomf
the two. It has been argued that it may be alphad bectivity that predominantly establishes the
microstate topographies (Milz et al., 2016a) sitieealpha band (8.5-12 Hz) is the EEG frequencylban
of strongest power in the range of 2-20 Hz, whicthie frequency range conventionally used to coeput
the EEG microstates (Koenig et al., 2002; Lehmarad.e2005; Pascual-Marqui et al., 2014). However,
the alpha band may primarily reflect inhibitory trat than excitatory functions, particularly in task
related brain areas (Milz et al., 2016a; Milz et @016b; Pfurtscheller, 2003; Salenius et al.,5199
Slatter, 1960).

Previous studies revealed no conclusive resultgaraing the association of the four EEG microstate
classes with specific power spectral distributi@Bistz et al., 2010; Musso et al., 2010). Howevhese

studies investigated mean spectra across all clstivat may disguise potential channel-locatiorcHjme



associations. To our knowledge, no previous stumlestigated head-surface localization- or source-

dependent power effects on the occurrence of th@ Bierostate classes.

The second point relates to the question whetledéfault mode network hubs, which were identifisd

a simple average of the sources correspondingetsehof topographic maps of the same microstate st
class (Pascual-Marqui et al., 2014), are indeedualy involved in the generation of the microstetess
topographies. It is possible that weaker sourcdsidari the default mode network exist, which were
masked by the gross averaging procedure. Such weakeces could likely be identified by comparing

source strengths between the generators whichligbt#tie different EEG microstate class topograghie

The difficulty with associating the EEG microstatasses with EEG frequency bands is the diffelierd t
scales (different temporal resolution) requireddentify them. For each measured sampling poirg, th
one of the four EEG microstate classes that it fgdoto can be determined based on minimal
dissimilarity. However, traditional frequency domainalysis technigues, which are used to compete th
EEG power in a particular frequency band, requinegér time periods than just a few milliseconds.
Fortunately, this problem can be overcome by measdifferent type of method that is used in tieddf

of time-frequency analysis, the discrete Hilbeaingform. By means of the Hilbert transform, theetim
varying instantaneous amplitude of a signal, cpoeding to a specified frequency band, can be
computed as the envelope of the analytic signalhjdal1999; Poularikas, 1998). Thus, with this roeth
we are able to retrieve for each frequency bandvamél the source strength at each time frame (Emp

which can be associated with the correspondingasiate.

In the present study, we identified the frequenegeahdent cortical sources of the four EEG micrestat
classes in two independent EEG datasets recordeehithy individuals during eyes closed resting §li=
and N=78). This was achieved by applying the Htltbe&nsform to eLORETA (Pascual-Marqui, 2007)
time series of cortical current density estimates6239 cortical voxels, calculated from the EEG
recordings. In this manner, for each individualerage frequency-dependent source strengths were
computed across all available EEG time frames wiitiuced a class A, B, C, or D head-surface
topography, respectively. These frequency-depenstaunce distributions were then compared via paired
t-tests between microstate classes for each dafasenjunction analysis revealed the most consikte

deviant sources of activity between classes athessvo datasets.

We hypothesized that the alpha frequency banddaties whether a head-surface topography of class A,
B, C, or D is induced (as suggested by Milz et2016a). Therefore, we expected differences incgour
strength between the four EEG microstate classdw tmore prominent in the alpha band than in the

other bands. Based on the primary sources of tloeostate classes identified by Pascual-Marqui .et al



(2014), we hypothesized alpha source strength sirbagest in the left posterior, right posteremd the
anterior cingulate cortices for microstate clas&de8, and C, respectively when compared to therothe

classes.
2. Material and methods
2.1 Datasets and preprocessing

Two preprocessed independent datasets (Dataset Dataset 2) were available for analysis. They both
comprise continuous EEG recordings from healthytigpants during eyes closed resting. Dataset 1
comprises 61-channel EEG data from 61 male paatitip(aged: 18-34 years) during 7 resting runof 5
s duration each. This dataset was recorded at ¥ Rrain Mapping Laboratory at the University
Hospital of Psychiatry, Zurich, using a 64-charBielSemi Recording System (see Milz et al., 2016a fo
a detailed description). Dataset 2 comprises 1-@inchannel eyes closed resting EEG data from 78
participants. This dataset is a subset of freelyilable EEG recordings from the internet
(https://physionet.org/physiobank/database/eegminidiii technical details about these recordingd an
their preprocessing are described in Goldbergat. ¢2000), Pascual-Marqui et al. (2014), and Schaél

al. (2004). For maximal comparability and to aveftécts of intermittent conditions, only the firssting

run of Dataset 1 was used for the analysis.

Datasets 1 and 2 were originally recorded with iédnoels at the following positions: Fpl/2, Fpz, A&7
AF3/4, AFz, F7/8, F5/6, F3/4, F1/2, Fz, FT7/8, F&3#C3/4, FC1/2, FCz, T7/8, C5/6, C3/4, C1/2, Cz,
TP7/8, CP5/6, CP3/4, CP1/2, CPz, P7/8, P5/6, BRI/, Pz, PO7/8, PO3/4, POz, O1/2, Oz, P9/10, and
Iz (according to the International "10-10 Syste@hatrian et al., 1985; Nuwer, 1987). For analythisse

of the 64 channels (P9, P10, and 1z) were discasilemk they were significantly more distant frore th
corresponding closest neighbor compared to alleskoseighbor inter-distances. This resulted in @&mo
uniform spatial sampling of the scalp with the rérrgy 61 non-outlier electrodes (see also Milzlet a
2016a; Pascual-Marqui et al., 2014). Original samgplates were 2048 Hz and 160 Hz, for datasetgll a
2 respectively. For dataset 1, preprocessing irdudsampling to 256 Hz and the extraction of actef
free 2-s epochs. For dataset 2, no resampling was dnd 1-s epochs were extracted from the availabl

1-min of artefact-free EEG.

In sum, for the two datasets 5828 s of EEG werdabla during the first eyes closed resting runté3at

1. 1382 s, Dataset 2. 4446 s). As commonly doneEfe6G microstate analysis, datasets were filtered
between 2-20 Hz prior to analysis and re-referenoemlerage reference (Koenig et al., 2002; Lehmann
et al., 2005; Pascual-Marqui et al., 2014). This wassible since the EEG devices used to recotd bot

datasets used amplifier filter settings that inellithis common broad band for analysis.



2.2 Microstate analysis

EEG microstate analysis was performed separatelgdoh dataset witkeypy Keypy is an open source
library for EEG microstate analysis (Milz, 2016; Ikiet al., 2016a) and freely available from:

www.github.com/keyinst/keypy. It is scriptable ahds requires no direct interaction via a graphicsar

interface.

EEG microstate segmentation was performed basdbeofour normative microstate class topographies
published by Koenig et al. (2002) (see Figure dy. €ach participant and each epoch, the time segmen
corresponding to a particular class of the four EfiBrostate topographies were identified. This was
done by extracting all global field power (GFP) kavithin a given epoch (see also e.g. Andreou.et a
2014; Katayama et al., 2007; Schlegel et al., 20IBg EEG topography at each GFP peak was then
labeled A, B, C, or D based on their minimal toggical dissimilarity (Lehmann and Skrandies, 1980)
with the four normative maps (disregarding polaritMicrostate beginning and endpoints were defiaed
the midpoint between two GFP peaks attributed to different classes. Within each 2-s epoch, the
beginning of the first and the end of the last wstate cannot be determined and thus the respeictige
segments were excluded from the subsequent anégsisalso Milz et al., 2016a). Note that the apgino

of identifying microstates based on GFP peaks Iastvantage that topographies with a poor signal t
noise ratio can be disregarded for microstate sagatien. In sum, we applied the same algorithm that
has been used previously (e.g. Koenig et al 2002nk) et al 1999, Pascual-Marqui et al 1995) with t
modifications: (1) we identified the time segmeatsresponding to a particular microstate basechen t
four classes previously described in the literatatber than extracted via a data-driven manner(and
the first and last EEG microstate of the 2-s epeafi®e not considered as applied by Milz et al.,6201

2.3 Frequency-dependent intra-cortical source atitis

Frequency-dependent intra-cortical instantaneoydliiudes were computed separately for each dataset

as follows.

In a first step, for each EEG recording, time sed€electric neuronal activity were computed vattact

low resolution electromagnetic tomography (eLORETRascual-Marqui, 2007). In the next step, by
means of the Hilbert transform, band limited inti@eous amplitude of the source signals (i.e.
envelopes) were computed at each cortical voxepdrticular, for each time frame, the instantaneous
amplitude signals (source strength) at 6239 cdriicaels were computed for four frequency bands:
delta: 2-6 Hz, theta: 6.5-8 Hz, alpha: 8.5-12 Had deta: 12.5-20 Hz (see Kubicki et al., 1979;
Niedermeyer and da Silva, 2005). Note that relftivieroad frequency bands were used, without
subdividing the alpha and beta bands, in ordensu e that the analytic signals retained high degod



freedom (i.e. that they were not limited to neangk frequency sine waves). We further note that th
instantaneous amplitudes can be calculated by igodsm other than the Hilbert transform, such as the
short-time Fourier transform or by means of certaaivelets. However, all these methods should reveal

similar results, since they are essentially eqgeivi{see e.g. Bruns, 2004).

Thus, this procedure results at each voxel andémh frequency band in four time varying signals of
instantaneous source strength. More importantymfanother point of view, this procedure reveals fo
each time frame, images of the instantaneous gtresfgcortical generators of the different oscoiat
activities (delta, theta, alpha, and beta). Thisetvarying frequency decomposition allows for thet f

time, to perform an appropriate association withdbrresponding microstate classes.

It is important to note that the instantaneous #oqge of the different frequency bands of the EBGA(

of the eLORETA source signals) are, by definiticalatively slow signals, since they correspondhie t
“envelopes” of the oscillatory activity. In termg$ time resolution, these slow changing signals are
compatible with the dynamics of microstate clasgnals, where a microstate has a duration of
approximately 100 ms. These observations suppertige of the methods of analysis developed here for

the frequency decomposition of the EEG microstates.
2.4 Statistics

For the four EEG microstate classes, their intndical sources corresponding to each frequency band
were identified separately for each dataset asvi@ll For each participant, the time frames assetiat
with microstate classes A, B, C, and D were deteedhi(as described above). Next, for each partitipan
for each frequency band, and each voxel, the eLORE$tantaneous amplitude values attributed to a
particular class were averaged across all time drarifhus, this procedure yielded a total of 16 mean
intra-cortical source distributions for each papdnt, consisting of each of the four microstatesses,
decomposed by frequency bands (four in total). éamh frequency band and each voxel, the cortical
instantaneous amplitudes of all possible pairs labses were compared. Paired t-test results were
combined between datasets via a conjunction aalgsinjoint significance across two independenstes
(Friston et al., 1999; Nichols et al., 2005) isiaghd when the maximum of the two-tailed p-valueaof
given voxel and frequency band is smaller thanstiigare root of the specified significance leveldim
case uncorrected 0.001, i.e., both voxels mustfggti< 0.0316, see also Friston et al., 1999).nte

that in our datasets, the p-value of 0.001 cormeded to a t-value of 3.4602 for our dataset 1, 24814

for dataset 2. These values were comparable to\thkies retrieved for conventional p<.05 and p<.10
thresholds when computationally-expensive corrastifor multiple testing were applied via the very

conservative non-parametric permutation test implaied in LORETA (e.g. the mean corrected t-



thresholds for dataset 2 for the critical alpha cbamere 3.549 and 3.305 for p<.05 and p<.10,
respectively), which relies on the max t-valueistiat (Nichols and Holmes, 2002).

2.5 Gravity centers and region of interest-basedmseof intracortical source activities in the alpband

Differences in source strength between classes demdnated by the alpha band. For this band, two

additional analyses were computed: a gravity ceartatysis and a region of interest (ROI) analysis.

The gravity center analysis was used to identify tore of the complex spatially-distributed source
activity pattern revealed by eLORETA. This methatluces the multivoxel data in a functionally
meaningful way, in that it assesses the princizgleats of the spatial organization of brain electri
activity. Even though, we cannot directly inferrfrahis analysis that the gravity center itself mheste
been the source of strongest activity, differendvily centers must result from different spatial
organizations of activated neuronal populationg @eso Tsuno et al., 2002). For each EEG microstate
class, the cortical 3D coordinates of the centegrafity of the mean source activity distributiocr@ss
participants and across voxels was computed. Theitgrcenter is defined as the weighted average

coordinates with the weights given by the mearamsineous amplitudes.

The ROI analysis was computed as follows. Afterrttagn analysis, nine clusters of voxels turnedtout
differ in source strength between the four EEG ostate classes. Some of these differences were
increases others were decreases of activity froen adass to another. Each of these nine clusters was
defined as one ROI. Subsequently, for each ofuledatasets, and each of these nine ROIs, the mean
source strength across all voxels within a ROI, wasputed. Mean absolute source strengths within
these ROIs across participants are reported angarisons between ROIs within classes were performed

by paired t-tests.
3. Results
3.1 Explained variance of EEG microstate class ¢ppphies and descriptive parameters

For Dataset 1, the four normative EEG microstaéissg#s explained on average across participants 76 %
of the variance of all global field power peaks attti% of the variance of all EEG time frames. For
Dataset 2, the four normative EEG microstate ckassplained on average across participants 72 % of
the variance of all global field power peaks and®5f the variance of all EEG time frames. The ager

time spent in the four classes (mean duration); thean occurrence per second (mean occurrenag), an
the mean percentage of time they covered (coverage)ss participants can be found in Inline
Supplementary Table 1.

---  Inline Supplementga Table 1 about here



3.2 Intra-cortical source activity differences betn classes

Separate analyses of datasets, as well as the nctinju analysis revealed significant voxel-wise
differences between the mean intra-cortical instagus amplitudes of the four EEG microstate ctasse
in the four EEG frequency bands. In the followinge results of the conjunction analysis will be

described.

Significant differences were observed for all f&EG frequency bands: delta, theta, alpha, and(beta
Inline Supplementary Figures 2 to 5). However, thveye clearly dominated by the alpha frequency band
as reflected by its’ largest proportion of voxei§edentially activated between classes compareather
bands (on average 34 % compared to 1 % in the, defain the theta, and 3 % in the beta band, Table
1). Therefore, in the following, we focus on theisms in the alpha band.

Teble 1 about here

--- Inline Supplementga Figure 1 about here

--- Inline Supplementga Figure 2 about here

---  Inline Supplementga Figure 3 about here

--- Inline Supplementga Figure 4 about here

Figures 2-4 illustrate these alpha band differerigesx equidistant brain slices for classes AaBd C
compared to the other classes, respectively. EEfEoBiate class A was characterized by increased mea
source strength in the alpha band in left posteggions compared to classes B and D (Figure 2 EE
microstate class B was characterized by increasednnsource strength in the alpha band in right
posterior regions compared to class A and D (Fgy@rand 3). EEG microstate class C was charaatkerize
by increased mean source strength in the alphaibdadye portions of the whole cortex, predomihant

in the left temporal lobe compared to classes Banahd right occipito-temporo-parietal areas coraga

to class A (Figures 2-4). EEG microstate class B @laaracterized by increased mean source stremgth i
the alpha band in large portions of the whole cocempared to classes A and B. We note that na othe
microstate class showed larger alpha source stranginy brain region than class C. Interestintig
dorsolateral prefrontal cortex (BA 9) did not shewvy significant alpha source strength differences

between classes.



In sum, microstate classes C and D were charaeteliy stronger mean source strength than classes A
and B in wide-spread cortical regions, particulaniythe right hemisphere compared to class A, aed t
left hemisphere compared to class B. Classes ABangre characterized by a lateralization difference
Class A showed increased left posterior and deededght posterior alpha source strength compared t
class B. Class C was characterized by increasagditat@nd left parietal alpha source strength cared

to class D.

Figure 2 about here

Figure 3 about here

Figure 4 about here

3.3 Gravity centers and ROI-based means of inttéearsource activities in the alpha band

Since the alpha EEG frequency band clearly appeasi decisive in determining the EEG microstate
class topography, we applied two additional analytselearn more about the spatial distributionhaf t

alpha generators of the four classes.

Firstly, for each microstate class, we computeddhmeter of gravity of the mean intra-cortical alpha
source strength across participants, across th@ ¥@&ls. This analysis revealed four centers tfiag

for the four frequency bands. These centers ofitictivere all localized in the posterior cingulaigrtex,
consistently across the two datasets (dataset &n NI coordinates across classes x=0.45, y=-23.31,
z=20.05, SD x=0.17, y=.12, z=0.11; dataset 2: meaordinates across classes x=0.57, y=-24.66,
z=17.61, SD x=0.15, y=.14, z=0.05). Theoreticathe center of gravity could lie outside the area of
active neural sources. However, this was not tlse aaour datasets, in which for all microstatesséss,

voxels in the posterior cingulate cortex belongethe third of voxels showing maximal source sttbng

Secondly, we defined nine ROIs as follows. For eafdie 6 comparisons between microstate classes in
the alpha band, we identified all voxels signifitardifferent between classes, separately for iases
(occurred in 4 comparisons) and decreases (occumrédcomparisons). For each of these ROIls, we
computed the mean instantaneous amplitude valuessaall voxels in the respective ROI. Their means
across participants and the corresponding startkarniations are listed in Table 2. We note thattfoth
Dataset 1 and Dataset 2, EEG microstate class Bhigher right posterior compared to left posterior
activity based on a contrast between activity mdandROls 1 (left posterior) and 2 (right poste}ior
(Dataset 1: t=-2.75, p=.008; Dataset 2: t=-5.3700%). There was no significant difference in dtiv
levels between these two ROIs for microstate chag®ataset 1: t=-0.34, p=.735; Dataset 2: t=1.22,



p=.228). Consequently, left-posterior intra-coittiaipha source strength was stronger in class A tha
class B (see Source Differences between Classas)ight-posterior activity in class B than A butlp
for class B a within-class-difference between mieftn and right-posterior source strength (basedhen

respective ROIs) was observed.

Table 2 about here
4. Discussion

The present study revealed consistent EEG frequieaicgi-wise intra-cortical source strength diffeenc
between time periods associated with EEG microstiateses A, B, C, and D during resting across two
independent datasets. Both datasets were obtaineehithy participants during eyes closed resfling
comparison of intra-cortical source strengths wasfgpmed by computing frequency-band specific
instantaneous amplitudes in 6239 intra-cortical el®x All possible combinations of classes were
compared in the two datasets. Consistent diffeeiaceoss datasets were identified via a conjunction

analysis.
4.1 Frequency-dependence of EEG microstate clgggtaphies

In line with our hypothesis (see also Milz et aD16a), the spatial distribution and extent ofadrtortical
source strength in the EEG alpha band predominaetigrmined whether a head-surface topography of
class A, B, C, or D was induced. This was refledigdthe large proportion of voxels differentially
activated between microstate classes in this ba#d4q on average across comparisons) compared to the
negligible fractions in all other bands (< 5 % amri@ge across comparisons). Previous studies had no
been able to reveal conclusive results on the riglionship between EEG microstate classes and
spectral power characteristics (Britz et al., 20Mysso et al.,, 2010). Our results showed that such
interrelations can be reliably identified acrostadats when location- / source- dependent powectsff

rather than global effects (e.g. derived from agesaacross channels) are investigated.
4.2 Intra-cortical sources of EEG microstate clasgographies

The expected spatial differences in intra-cortii@gha source strength between classes were laigely
agreement with our hypothesis (see also Milz e28l16a; Pascual-Marqui et al., 2014). EEG mictesta
class A showed increased left posterior alpha igttompared to classes B and D; EEG microstatescla
B showed increased right posterior alpha activitinpared to classes A and D, and EEG microstate clas

C showed increased alpha activity in the anteiimgudate cortex (ACC) compared to all other classes

Moreover, a center of gravity analysis revealed m@n common source of intra-cortical alpha agfivit

across microstate classes. This center was indsienor cingulate cortex (PCC) for all four classand



consistently across the two datasets. A previooadband (2-20 Hz) source localization analysis als
identified the PCC as a common center of activityhte four microstate classes (Pascual-Marqui.et al

2014). Our results indicate that this finding kely accounted for by alpha activity.

However, contrary to our hypothesis, classes ABulid not show any location-specific alpha incresase
compared to class C. Instead, EEG microstate dlashowed increased EEG alpha source activity
compared to all other classes. These activity as@e were observed in wide spread cortical regions
beyond the ACC including the left and right posiegortices. Therefore, our results further sug¢feest
many brain regions beyond the default mode netvamekinvolved in the generation of the four EEG

microstate class topographies.
4.3 EEG microstate analysis approach

We applied an EEG microstate analysis approachhichwthe EEG microstate class topographies were
not computed based on the dataset at hand butdeered from reverence maps. This means that we did
not recompute the four microstate classes basetthemparticipants’ EEG data in our datasets via the
modified k-means clustering algorithm and subsetuérst principal component-based mean
computation procedures frequently applied in thst ga.g. Koenig et al., 1999; Nishida et al., 2013;
Seitzman et al., 2016). Instead, we used the founative class topographies published by Koenig.et
(2002) to identify the time periods within partiaits’ EEGs corresponding to classes A, B, C, and D.
The four normative classes were obtained from 48@lthy participants and are publicly available
(www.github.com/keyinst/keypy). This approach wassen for two reasons. Firstly, it allowed optimal

comparison between the results derived from ourdat@sets. Secondly, it allows future studies swwdr
conclusions about the cortical regions involvedthie generation of the normative map topographies
rather than of the slightly varying topographiesivdel from the smaller datasets (N=61 and N=78Juse
in this study. Even though remarkably similar asrosny studies, at least some studies (e.g. Kagnig
al., 1999; Nishida et al., 2013; Seitzman et &@16) report one or more of the four data-driven map
topographies to deviate quite considerably fromrtbemative maps (Koenig et al., 2002). The cau$es o
such deviations and their effects on the EEG miatesclass topographies’ cortical sources remalveto

investigated.

The disadvantage of our approach is that the ptagerof variance explained by the four classes was
slightly lower than the percentage reported inliteeature. The explained variance in our datasstged
from 65 % to 76 % (depending on whether we aimedxaain all EEG time frames or high signal-to-
noise ratio GFP peak time frames only) as comptredore than 79 % in some (Kindler et al., 2011;
Koenig et al., 1999; Koenig et al., 2002) but nbstudies (e.g. Seitzman et al., 2016) that usedta-



driven microstate class computation approach. Vgaras that the unexplained variance reflects (1) the
intermediary topographies that occur during trams#t between microstate classes, which are
topographical mixtures of the latter and typicadlyorter and of lower signal to noise ratio, (2)unait
fluctuations in the exact topographical configuwratof the four microstate classes across partitipamd
(3) systematic fluctuations of the topographicaifiguration of the four microstate classes whiclyrna
associated with a participants thinking modalitg far example reported by Milz et al 2016) or other

factors that are yet to be identified.

We note that the choice to investigate exactly 866G microstate classes rather than any lowergbreni
number of topographies was based on previous sttidié identified four classes to be optimal based

a cross-validation criterion (e.g. Koenig et ab99) and a study that identified four normative EEG
microstate classes based on a large sample of d&ithi participants (Koenig et al., 2002). However,
these studies investigated resting state EEG asd asly a limited number of EEG recording channels.
Both, the mental state and the degree of spatsaluton (which depends on the number of channels),
may affect the number of microstate classes thttnafly explain the variance of brain electric aittf

across time. Future studies must clarify whethisritideed is the case.
4.4 Impact of results

Our findings have fundamental implications on timéeiipretation of the brain functional dynamics
reflected by the EEG microstates. They entail tiae periods associated with the predominance of
different EEG microstate classes are charactetizethcreased alpha source strength in specifimbrai
regions. Alpha frequency oscillations reportedlyibit inhibitory rather than excitatory brain adtyy
particularly in task-related brain areas that maslude cortices involved in the processing of défe
sensory modalities or motor activities (Milz et, &016b; Pfurtscheller, 2003; Salenius et al., 1995
Slatter, 1960). Consequently, our results sugpestthe EEG microstate dynamics may reflect sydiema
sequences of deactivation or inhibition in defantide network hubs (Pascual-Marqui et al., 2014) and
additional brain areas rather than sequences ditddon. Each class may represent a differermaator
state that the brain repeatedly transitions intee Thetabolic default mode network identified viaRM
likely reflects a temporally smoothed representatmf these regular spatially-distributed states of

inhibition or reduced cortical excitability.

Furthermore, our results have a fundamental impacthe interpretation of previous results retrieved
from the EEG microstate analysis. For example aftygarent conflicting finding of increased prominenc
of class A reported during visualization, and cl&ssluring verbalization (Milz et al., 2015) and the

associations of microstate classes A and B withabwic networks associated with phonological and



visual processing, respectively (Britz et al., 20&@8n now be resolved. Our results suggest thdinén
with Britz et al. (2010), classes A and B are irtlassociated with left and right posterior braigioes
involved in phonological and visuo-spatial procegsirespectively. However, increased prominence of
classes A and B — if we accept the assumptiondheatroad alpha band reflects inhibitory activity i
modality-related areas - reflect longer time pesiddring which the respective brain regions arébitgd
rather than facilitated. Consequently, we foung<lA more prominently involved during visualization

and class B during verbalization as reported by Mtlal. (2016a).

Moreover, the previously reported increased promgeeof class C during resting compared to tasks
(Milz et al., 2016a; Seitzman et al., 2016) is ander surprising when we consider that class Ccgsur
were characterized by increased alpha activityGn 84 % of voxels and no decreases compared to all
other classes. Decreased alpha activity, partiguilartask-related areas, has frequently been tegadn
tasks compared to resting conditions (de Pesteas, &016; Pfurtscheller et al., 1996). This &oah line
with the proposition made by Seitzman et al. (2ahé} class C occurrence might be associated tith t

activity of a network that is more strongly acteditwhen no explicit task is performed.

On a side note, descriptions of several samplexitesd in the literature (e.g. Faber et al 201 hI&gel

et al 2011; Koenig et al 2002) and our results sagthat participants tend to spend most of theie t
during resting in the two microstate classes C awnd D rather than in A and / or B. That is, the
topographies of either of the two classes of ratlyenmetric left- right- hemispheric distributiomad
based on our results, increased alpha source 8tresggem to be more prominent than the other twgs T
does not necessarily hold, however, for other stafeconsciousness (e.g. hypnosis: Katayama et al.,
2007). Further research is needed to determinerliff microstate class prominence patterns in rdiffe

states or during task execution.

If EEG microstate class topographies were inde@ckulrby inhibitory alpha oscillations, as our résul
suggest, the question arises in favor of whichrbragions these wide-spread alpha inhibitions mitght
taking place. Our analysis revealed only a verytéthnumber of voxels significantly different in B&EG
frequency band primarily associated with facildatisuch as beta activity. The lack of significant
differences in the beta band suggests that thegseintkeed be no specific brain regions consistently
differentially facilitated between the four micrast classes or that such differences exist buthiavo
brain regions of a strongly heterogeneous functistracture (Fehr, 2013) which would make it haod f
group statistics to identify them. It remains toibeestigated whether the same or very similar head
surface topographies would be retrieved, if therasitate analysis would be based on the alpha fregue
band only rather than on the conventionally usexdbrfrequency band of 2-20 Hz (Koenig et al., 2002;
Lehmann et al., 2005; Pascual-Marqui et al., 2014).



The previous microstate literature suggested chaterogenous functions for the four EEG microstate
classes. They include associations with visualesbal processing (Milz et al., 2016a), the defaudde
network Hz (Pascual-Marqui et al., 2014), task-tiegaand task-positive networks (Seitzman et al.,
2016), reality testing (Kindler et al., 2011; Nidaiet al., 2013; Rieger et al., 2016), autonomic| a

attention-related processing (Britz et al., 2010).

Our results suggest that these heterogeneous atsgnsi may simply reflect the heterogeneity of
functions of the many brain regions differentidltyolved in the generation of the four EEG micrtsta
classes. Increased demands in one of these maciyoiusm may contribute to changes in duration aod /

occurrence of particular EEG microstate classesiging degrees.
5. Conclusions

The present study revealed that the intracortitaihgth and spatial distribution of intra-corticdpha
oscillations predominantly determine whether a kamafiace topography of EEG microstate class A, B,
C, or D is induced. EEG microstate class C wasatharized by stronger alpha activity compared ko al
other classes in large portions of the cortex. £kswvas associated with stronger left posteriohalp

activity than classes B and D, and class B withrgjer right posterior alpha than A and D.

Previous results already indicated that the EEGastate dynamics reflect a fundamental mechanism of
the human brain. These dynamics are characterigexydiematic transitions between four head-surface
topographies, the EEG microstate classes. Diffguatterns of transitions were associated with dffie
mental states in health and disease. Our reswts gtat these dynamic topographical changes averdri

by intra-cortical alpha oscillations likely refléng decreased cortical excitability. Thus, we p@pthat

the EEG microstate class dynamics reflect systeniatnsitions between four global attractor st#tes

are characterized by selective inhibition of spediftra-cortical regions.
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Figure Legends

Figure 1. The head-surface topographies of the fmumative EEG microstate classes identified by
Koenig et al. (2002) based on 496 participantsitiveselectric potential values are depicted in,red
negative electrode potential values are depictetiue. Note that, in the EEG microstate analysis of
spontaneous EEG, the spatial distribution of theemttal values is the crucial parameter; polargy i

disregarded.

Figure 2. Intra-cortical alpha (8.5-12 Hz) activitifferences between EEG microstate class A arsbeta

B, C, and D. Equidistant horizontal slices from 34-to 45 (MNI coordinates). Significant voxels
(p<.001, uncorrected) are depicted in red (positimkies) and blue (negative values). The number of
voxels involved in significant alpha increases {pasd decreases (neg) between classes are denoted
separately for the left (LH) and right (RH) hemisph

Figure 3. Intra-cortical alpha (8.5-12 Hz) activitifferences between EEG microstate class B ars$eta
C and D (for details see Figure 2).

Figure 4. Intra-cortical alpha (8.5-12 Hz) activitifferences between EEG microstate class C anfdD (

details see Figure 2).

Supplementary Figure Legends

Inline Supplementary Figure 1. Glass-brain viewsp(tleft side, rear) of the eLORETA voxels
significantly different (p<.001 uncorrected) betwethe four EEG microstate classes in the delta EEG

frequency band. Positive values are depicted inmegdative values in blue.

Inline Supplementary Figure 2. Glass-brain viewsp(tleft side, rear) of the eLORETA voxels
significantly different (p<.001 uncorrected) betwethe four EEG microstate classes in the theta EEG

frequency band. Positive values are depicted inmegdative values in blue.

Inline Supplementary Figure 3. Glass-brain viewsp(tleft side, rear) of the eLORETA voxels
significantly different (p<.001 uncorrected) betwehe four EEG microstate classes in the alpha EEG

frequency band. Positive values are depicted inmegative values in blue.

Inline Supplementary Figure 4. Glass-brain viewsp(tleft side, rear) of the eLORETA voxels
significantly different (p<.001 uncorrected) betwethe four EEG microstate classes in the beta EEG

frequency band. Positive values are depicted inmegdative values in blue.



Tables

Table 1. Proportion of the 6239 voxels significgndiifferent in activity (mean instantaneous amplés) between EEG

microstate classes for the four EEG frequency bateds through beta.

EEG

frequency

band Avs.B Avs.C Avs.D Bvs.C Bvs.D Cvs.D
delta 0% 2% 1% 2% 0% 1%
theta 2% 4% 1% 7% 2% 0%
alpha 30%  46% 24% 54% 24% 26%
beta 2% 1% 4% 3% 2% 3%

Table 2. Mean and standard deviation (in brackefsjnean source activity (instantaneous amplitudesuarent density in

A/mnf) across voxels in 9 Regions of Interests (ROIspszcall participants. ROIs were derived based dnvakels
significantly increased or decreased between clagbéise 6 comparisons depicted in Figures 2-4. RQdlass A > B, ROI
2: class A < B; ROI 3: class A < C; ROI 4: class AD> ROI 5: class A < D; ROI 6: class B < C; ROl 7lass B > D; ROI
8: class B < D; ROI 9: class C > D.

Dataset 1 Dataset 2

ROI Region ClassA ClassB ClassC ClassD (assClassB  ClassC Class D
ROI 1 left 0.25 0.24 0.25 0.24 0.28 0.27 0.29 0.28
posterior  (0.07) (0.07) (0.07) (0.07) (0.15) (0.14) (0.16) (0.14)
ROI 2 right 0.24 0.26 0.26 0.26 0.29 0.30 0.31 0.31
posterior  (0.08) (0.08) (0.08) (0.09) (0.15) (0.16) (0.17) (0.17)
ROI 3 wide- 0.21 0.22 0.22 0.22 0.26 0.26 0.28 0.27
spread (0.06) (0.06)  (0.06) (0.06) (0.12) (0.13) (0.14) (0.14)
ROI 4 left 0.35 0.34 0.36 0.35 0.29 0.28 0.30 0.29
posterior  (0.10) (0.10) (0.09) (0.09) (0.15) (0.14) (0.16) (0.15)
ROI 5 wide- 0.21 0.22 0.23 0.23 0.27 0.29 0.30 0.29
spread (0.07) (0.07) (0.07) (0.08) (0.14) (0.15) (0.16) (0.16)
ROI 6 wide- 0.21 0.21 0.22 0.21 0.24 0.24 0.25 0.25
spread (0.05) (0.05) (0.06) (0.06) (0.11) (0.11) (0.12) (0.12)
ROI 7 right 0.27 0.28 0.28 0.27 0.32 0.33 0.33 0.32
posterior  (0.08) (0.09) (0.08) (0.09) (0.18) (0.19) (0.19) (0.18)
ROI 8 wide- 0.19 0.19 0.20 0.20 0.24 0.24 0.26 0.25
spread (0.05) (0.05) (0.05) (0.05) (0.11) (0.11) (0.13) (0.12)
ROI 9 wide- 0.24 0.23 0.24 0.24 0.26 0.26 0.28 0.26

spread  (0.06) (0.06) (0.06)  (0.06) (0.13) (0.13) (0.15)  (0.13)






Alpha activity
differences of class A

compared to class B

Top view
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# voxels

LH RH
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neg 0 1247

Horizontal slices
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compared to class C

Top view
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# voxels

LH RH

pos O 0
neg 838 1931

Horizontal slices
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compared to class D

Top view
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# voxels
LH RH
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Horizontal slices

@ Positive values @ Negative values



Alpha activity
differences of class B

compared to class C

Top view

# voxels
LH RH
pos 0 0

neg 1800 1448
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Horizontal slices

compared to class D

Top view
"‘ § v

" 7 t 1’3’

# voxels
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