Header

UZH-Logo

Maintenance Infos

Human epidermal Langerhans cells express the tight junction protein claudin-1 and are present in human genetic claudin-1 deficiency (NISCH syndrome)


Zimmerli, S C; Kerl, K; Hadj-Rabia, S; Hohl, D; Hauser, C (2008). Human epidermal Langerhans cells express the tight junction protein claudin-1 and are present in human genetic claudin-1 deficiency (NISCH syndrome). Experimental Dermatology, 17(1):20-23.

Abstract

Claudin-1 (CLDN1) is a structural tight junction (TJ) protein and is expressed in differentiating keratinocytes and Langerhans cells in the epidermis. Our objective was to identify immunoreactive CLDN1 in human epidermal Langerhans cells and to examine the pattern of epidermal Langerhans cells in genetic human CLDN1 deficiency [neonatal ichthyosis, sclerosing cholangitis (NISCH) syndrome]. Epidermal cells from healthy human skin labelled with CLDN1-specific antibodies were analysed by confocal laser immunofluorescence microscopy and flow cytometry. Skin biopsy sections of two patients with NISCH syndrome were stained with an antibody to CD1a expressed on epidermal Langerhans cells. Epidermal Langerhans cells and a subpopulation of keratinocytes from healthy skin were positive for CLDN1. The gross number and distribution of epidermal Langerhans cells of two patients with molecularly confirmed NISCH syndrome, however, was not grossly altered. Therefore, CLDN1 is unlikely to play a critical role in migration of Langerhans cells (or their precursors) to the epidermis or their positioning within the epidermis. Our findings do not exclude a role of this TJ molecule once Langerhans cells have left the epidermis for draining lymph nodes.

Abstract

Claudin-1 (CLDN1) is a structural tight junction (TJ) protein and is expressed in differentiating keratinocytes and Langerhans cells in the epidermis. Our objective was to identify immunoreactive CLDN1 in human epidermal Langerhans cells and to examine the pattern of epidermal Langerhans cells in genetic human CLDN1 deficiency [neonatal ichthyosis, sclerosing cholangitis (NISCH) syndrome]. Epidermal cells from healthy human skin labelled with CLDN1-specific antibodies were analysed by confocal laser immunofluorescence microscopy and flow cytometry. Skin biopsy sections of two patients with NISCH syndrome were stained with an antibody to CD1a expressed on epidermal Langerhans cells. Epidermal Langerhans cells and a subpopulation of keratinocytes from healthy skin were positive for CLDN1. The gross number and distribution of epidermal Langerhans cells of two patients with molecularly confirmed NISCH syndrome, however, was not grossly altered. Therefore, CLDN1 is unlikely to play a critical role in migration of Langerhans cells (or their precursors) to the epidermis or their positioning within the epidermis. Our findings do not exclude a role of this TJ molecule once Langerhans cells have left the epidermis for draining lymph nodes.

Statistics

Citations

Dimensions.ai Metrics
17 citations in Web of Science®
20 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

1 download since deposited on 18 Feb 2009
0 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > University Hospital Zurich > Dermatology Clinic
Dewey Decimal Classification:610 Medicine & health
Scopus Subject Areas:Life Sciences > Biochemistry
Life Sciences > Molecular Biology
Health Sciences > Dermatology
Language:English
Date:January 2008
Deposited On:18 Feb 2009 15:25
Last Modified:25 Jun 2022 21:30
Publisher:Wiley-Blackwell
ISSN:0906-6705
OA Status:Closed
Publisher DOI:https://doi.org/10.1111/j.1600-0625.2007.00624.x
PubMed ID:18095941