Header

UZH-Logo

Maintenance Infos

Site-specific dual-color labeling of long RNAs for single-molecule spectroscopy


Zhao, Meng; Steffen, Fabio D; Börner, Richard; Schaffer, Michelle F; Sigel, Roland K O; Freisinger, Eva (2018). Site-specific dual-color labeling of long RNAs for single-molecule spectroscopy. Nucleic Acids Research, 46(3):e13-e13.

Abstract

Labeling of long RNA molecules in a site-specific yet generally applicable manner is integral to many spectroscopic applications. Here we present a novel covalent labeling approach that is site-specific and scalable to long intricately folded RNAs. In this approach, a custom-designed DNA strand that hybridizes to the RNA guides a reactive group to target a preselected adenine residue. The functionalized nucleotide along with the concomitantly oxidized 3'-terminus can subsequently be conjugated to two different fluorophores via bio-orthogonal chemistry. We validate this modular labeling platform using a regulatory RNA of 275 nucleotides, the btuB riboswitch of Escherichia coli, demonstrate its general applicability by modifying a base within a duplex, and show its site-selectivity in targeting a pair of adjacent adenines. Native folding and function of the RNA is confirmed on the single-molecule level by using FRET as a sensor to visualize and characterize the conformational equilibrium of the riboswitch upon binding of its cofactor adenosylcobalamin. The presented labeling strategy overcomes size and site constraints that have hampered routine production of labeled RNA that are beyond 200 nt in length.

Abstract

Labeling of long RNA molecules in a site-specific yet generally applicable manner is integral to many spectroscopic applications. Here we present a novel covalent labeling approach that is site-specific and scalable to long intricately folded RNAs. In this approach, a custom-designed DNA strand that hybridizes to the RNA guides a reactive group to target a preselected adenine residue. The functionalized nucleotide along with the concomitantly oxidized 3'-terminus can subsequently be conjugated to two different fluorophores via bio-orthogonal chemistry. We validate this modular labeling platform using a regulatory RNA of 275 nucleotides, the btuB riboswitch of Escherichia coli, demonstrate its general applicability by modifying a base within a duplex, and show its site-selectivity in targeting a pair of adjacent adenines. Native folding and function of the RNA is confirmed on the single-molecule level by using FRET as a sensor to visualize and characterize the conformational equilibrium of the riboswitch upon binding of its cofactor adenosylcobalamin. The presented labeling strategy overcomes size and site constraints that have hampered routine production of labeled RNA that are beyond 200 nt in length.

Statistics

Citations

Dimensions.ai Metrics
20 citations in Web of Science®
24 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

109 downloads since deposited on 28 Nov 2017
10 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:07 Faculty of Science > Department of Chemistry
Dewey Decimal Classification:540 Chemistry
Scopus Subject Areas:Life Sciences > Genetics
Language:English
Date:2018
Deposited On:28 Nov 2017 15:33
Last Modified:26 Jan 2022 14:18
Publisher:Oxford University Press
ISSN:0305-1048
OA Status:Gold
Free access at:PubMed ID. An embargo period may apply.
Publisher DOI:https://doi.org/10.1093/nar/gkx1100
PubMed ID:29136199
  • Content: Published Version
  • Language: English
  • Licence: Creative Commons: Attribution-NonCommercial 4.0 International (CC BY-NC 4.0)