Header

UZH-Logo

Maintenance Infos

Stabilized Solar Hydrogen Production with CuO/CdS Heterojunction Thin Film Photocathodes


Septina, Wilman; Prabhakar, Rajiv Ramanujam; Wick, René; Moehl, Thomas; Tilley, S David (2017). Stabilized Solar Hydrogen Production with CuO/CdS Heterojunction Thin Film Photocathodes. Chemistry of Materials, 29(4):1735-1743.

Abstract

Cupric oxide (CuO) is a promising material for large-scale, economic solar energy conversion due to the abundance of copper, suitable band gap, and ease of fabrication. For application as a photocathode for water splitting, the main challenge is prevention of the inherent photocorrosion in aqueous media. Photoelectrochemical measurements of bare CuO thin films prepared by oxidation of electroplated Cu indicated that the vast majority of the photocurrent in 1 M phosphate buffer solution (pH 7) comes from photocorrosion of the CuO into metallic Cu, with a faradaic efficiency for hydrogen evolution of ∼0.01%. We found that deposition of an n-type CdS buffer layer underneath a protective TiO2 layer yielded a stable and efficient photoelectrode, with the champion electrode giving 1.68 mA cm–2 at 0 VRHE and an onset potential of ca. 0.45 VRHE. We attribute a favorable band alignment of CuO/CdS for the record photovoltage obtained with this material and a high conformality of the TiO2 layer on the sulfide surface for the high stability of hydrogen-producing photocurrents (faradaic efficiency ∼100%).

Abstract

Cupric oxide (CuO) is a promising material for large-scale, economic solar energy conversion due to the abundance of copper, suitable band gap, and ease of fabrication. For application as a photocathode for water splitting, the main challenge is prevention of the inherent photocorrosion in aqueous media. Photoelectrochemical measurements of bare CuO thin films prepared by oxidation of electroplated Cu indicated that the vast majority of the photocurrent in 1 M phosphate buffer solution (pH 7) comes from photocorrosion of the CuO into metallic Cu, with a faradaic efficiency for hydrogen evolution of ∼0.01%. We found that deposition of an n-type CdS buffer layer underneath a protective TiO2 layer yielded a stable and efficient photoelectrode, with the champion electrode giving 1.68 mA cm–2 at 0 VRHE and an onset potential of ca. 0.45 VRHE. We attribute a favorable band alignment of CuO/CdS for the record photovoltage obtained with this material and a high conformality of the TiO2 layer on the sulfide surface for the high stability of hydrogen-producing photocurrents (faradaic efficiency ∼100%).

Statistics

Citations

Dimensions.ai Metrics
20 citations in Web of Science®
19 citations in Scopus®
15 citations in Microsoft Academic
Google Scholar™

Altmetrics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:07 Faculty of Science > Department of Chemistry
08 University Research Priority Programs > Solar Light to Chemical Energy Conversion
Dewey Decimal Classification:540 Chemistry
Language:English
Date:2017
Deposited On:28 Dec 2017 18:30
Last Modified:19 Feb 2018 09:46
Publisher:American Chemical Society (ACS)
ISSN:0897-4756
OA Status:Closed
Publisher DOI:https://doi.org/10.1021/acs.chemmater.6b05248

Download

Full text not available from this repository.
View at publisher

Get full-text in a library