Header

UZH-Logo

Maintenance Infos

In human non-REM sleep, more slow-wave activity leads to less blood flow in the prefrontal cortex


Tüshaus, Laura; Omlin, Ximena; Tuura, Ruth O'Gorman; Federspiel, Andrea; Luechinger, Roger; Staempfli, Philipp; Koenig, Thomas; Achermann, Peter (2017). In human non-REM sleep, more slow-wave activity leads to less blood flow in the prefrontal cortex. Scientific Reports, 7(1):14993.

Abstract

Cerebral blood flow (CBF) is related to integrated neuronal activity of the brain whereas EEG provides a more direct measurement of transient neuronal activity. Therefore, we addressed what happens in the brain during sleep, combining CBF and EEG recordings. The dynamic relationship of CBF with slow-wave activity (SWA; EEG sleep intensity marker) corroborated vigilance state specific (i.e., wake, non-rapid eye movement (NREM) sleep stages N1-N3, wake after sleep) differences of CBF e.g. in the posterior cingulate, basal ganglia, and thalamus, indicating their role in sleep-wake regulation and/or sleep processes. These newly observed dynamic correlations of CBF with SWA - namely a temporal relationship during continuous NREM sleep in individuals - additionally implicate an impact of sleep intensity on the brain's metabolism. Furthermore, we propose that some of the aforementioned brain areas that also have been shown to be affected in disorders of consciousness might therefore contribute to the emergence of consciousness.

Abstract

Cerebral blood flow (CBF) is related to integrated neuronal activity of the brain whereas EEG provides a more direct measurement of transient neuronal activity. Therefore, we addressed what happens in the brain during sleep, combining CBF and EEG recordings. The dynamic relationship of CBF with slow-wave activity (SWA; EEG sleep intensity marker) corroborated vigilance state specific (i.e., wake, non-rapid eye movement (NREM) sleep stages N1-N3, wake after sleep) differences of CBF e.g. in the posterior cingulate, basal ganglia, and thalamus, indicating their role in sleep-wake regulation and/or sleep processes. These newly observed dynamic correlations of CBF with SWA - namely a temporal relationship during continuous NREM sleep in individuals - additionally implicate an impact of sleep intensity on the brain's metabolism. Furthermore, we propose that some of the aforementioned brain areas that also have been shown to be affected in disorders of consciousness might therefore contribute to the emergence of consciousness.

Statistics

Citations

Altmetrics

Downloads

5 downloads since deposited on 30 Jan 2018
5 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > University Children's Hospital Zurich > Medical Clinic
Dewey Decimal Classification:610 Medicine & health
Language:English
Date:November 2017
Deposited On:30 Jan 2018 07:48
Last Modified:19 Feb 2018 09:48
Publisher:Nature Publishing Group
ISSN:2045-2322
OA Status:Gold
Free access at:PubMed ID. An embargo period may apply.
Publisher DOI:https://doi.org/10.1038/s41598-017-12890-7
PubMed ID:29101338

Download

Download PDF  'In human non-REM sleep, more slow-wave activity leads to less blood flow in the prefrontal cortex'.
Preview
Content: Published Version
Language: English
Filetype: PDF
Size: 2MB
View at publisher
Licence: Creative Commons: Attribution-NonCommercial 4.0 International (CC BY-NC 4.0)