Header

UZH-Logo

Maintenance Infos

Role of HTRA1 in bone formation and regeneration: In vitro and in vivo evaluation


Filliat, Gladys; Mirsaidi, Ali; Tiaden, André N; Kuhn, Gisela A; Weber, Franz E; Oka, Chio; Richards, Peter J (2017). Role of HTRA1 in bone formation and regeneration: In vitro and in vivo evaluation. PLoS ONE, 12(7):e0181600.

Abstract

The role of mammalian high temperature requirement protease A1 (HTRA1) in somatic stem cell differentiation and mineralized matrix formation remains controversial, having been demonstrated to impart either anti- or pro-osteogenic effects, depending on the in vitro cell model used. The aim of this study was therefore to further evaluate the role of HTRA1 in regulating the differentiation potential and lineage commitment of murine mesenchymal stem cells in vitro, and to assess its influence on bone structure and regeneration in vivo. Our results demonstrated that short hairpin RNA-mediated ablation of Htra1 in the murine mesenchymal cell line C3H10T1/2 increased the expression of several osteogenic gene markers, and significantly enhanced matrix mineralization in response to BMP-2 stimulation. These effects were concomitant with decreases in the expression of chondrogenic gene markers, and increases in adipogenic gene expression and lipid accrual. Despite the profound effects of loss-of-function of HTRA1 on this in vitro osteochondral model, these were not reproduced in vivo, where bone microarchitecture and regeneration in 16-week-old Htra1-knockout mice remained unaltered as compared to wild-type controls. By comparison, analysis of femurs from 52-week-old mice revealed that bone structure was better preserved in Htra1-knockout mice than age-matched wild-type controls. These findings therefore provide additional insights into the role played by HTRA1 in regulating mesenchymal stem cell differentiation, and offer opportunities for improving our understanding of how this multifunctional protease may act to influence bone quality.

Abstract

The role of mammalian high temperature requirement protease A1 (HTRA1) in somatic stem cell differentiation and mineralized matrix formation remains controversial, having been demonstrated to impart either anti- or pro-osteogenic effects, depending on the in vitro cell model used. The aim of this study was therefore to further evaluate the role of HTRA1 in regulating the differentiation potential and lineage commitment of murine mesenchymal stem cells in vitro, and to assess its influence on bone structure and regeneration in vivo. Our results demonstrated that short hairpin RNA-mediated ablation of Htra1 in the murine mesenchymal cell line C3H10T1/2 increased the expression of several osteogenic gene markers, and significantly enhanced matrix mineralization in response to BMP-2 stimulation. These effects were concomitant with decreases in the expression of chondrogenic gene markers, and increases in adipogenic gene expression and lipid accrual. Despite the profound effects of loss-of-function of HTRA1 on this in vitro osteochondral model, these were not reproduced in vivo, where bone microarchitecture and regeneration in 16-week-old Htra1-knockout mice remained unaltered as compared to wild-type controls. By comparison, analysis of femurs from 52-week-old mice revealed that bone structure was better preserved in Htra1-knockout mice than age-matched wild-type controls. These findings therefore provide additional insights into the role played by HTRA1 in regulating mesenchymal stem cell differentiation, and offer opportunities for improving our understanding of how this multifunctional protease may act to influence bone quality.

Statistics

Citations

Dimensions.ai Metrics
2 citations in Web of Science®
1 citation in Scopus®
1 citation in Microsoft Academic
Google Scholar™

Altmetrics

Downloads

7 downloads since deposited on 04 Jan 2018
7 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > Center for Dental Medicine > Clinic for Cranio-Maxillofacial Surgery
Dewey Decimal Classification:610 Medicine & health
Language:English
Date:2017
Deposited On:04 Jan 2018 12:40
Last Modified:19 Aug 2018 12:22
Publisher:Public Library of Science (PLoS)
ISSN:1932-6203
OA Status:Gold
Free access at:PubMed ID. An embargo period may apply.
Publisher DOI:https://doi.org/10.1371/journal.pone.0181600
PubMed ID:28732055
Project Information:
  • : FunderSNSF
  • : Grant ID31003A_156313
  • : Project TitleRegulation of endochondral ossification by HTRA1 and its consequences for bone regeneration

Download

Download PDF  'Role of HTRA1 in bone formation and regeneration: In vitro and in vivo evaluation'.
Preview
Content: Published Version
Filetype: PDF
Size: 34MB
View at publisher
Licence: Creative Commons: Attribution 4.0 International (CC BY 4.0)