Header

UZH-Logo

Maintenance Infos

Chromatin remodeler CHD1 promotes XPC‐to‐TFIIH handover of nucleosomal UV lesions in nucleotide excision repair


Rüthemann, Peter; Balbo Pogliano, Chiara; Codilupi, Tamara; Garajovà, Zuzana; Naegeli, Hanspeter (2017). Chromatin remodeler CHD1 promotes XPC‐to‐TFIIH handover of nucleosomal UV lesions in nucleotide excision repair. EMBO Journal Online, 36(22):3372-3386.

Abstract

Ultraviolet (UV) light induces mutagenic cyclobutane pyrimidine dimers (CPDs) in nucleosomal DNA that is tightly wrapped around histone octamers. How global-genome nucleotide excision repair (GG-NER) processes CPDs despite that this chromatin arrangement is poorly understood. An increased chromatin association of CHD1 (chromodomain helicase DNA-binding 1) upon UV irradiation indicated possible roles of this chromatin remodeler in the UV damage response. Immunoprecipitation of chromatin fragments revealed that CHD1 co-localizes in part with GG-NER factors. Chromatin fractionation showed that the UV-dependent recruitment of CHD1 occurs to UV lesions in histone-assembled nucleosomal DNA and that this CHD1 relocation requires the lesion sensor XPC (xeroderma pigmentosum group C). In situ immunofluorescence analyses further demonstrate that CHD1 facilitates substrate handover from XPC to the downstream TFIIH (transcription factor IIH). Consequently, CHD1 depletion slows down CPD excision and sensitizes cells to UV-induced cytotoxicity. The finding of a CHD1-driven lesion handover between sequentially acting GG-NER factors on nucleosomal histone octamers suggests that chromatin provides a recognition scaffold enabling the detection of a subset of CPDs.

Abstract

Ultraviolet (UV) light induces mutagenic cyclobutane pyrimidine dimers (CPDs) in nucleosomal DNA that is tightly wrapped around histone octamers. How global-genome nucleotide excision repair (GG-NER) processes CPDs despite that this chromatin arrangement is poorly understood. An increased chromatin association of CHD1 (chromodomain helicase DNA-binding 1) upon UV irradiation indicated possible roles of this chromatin remodeler in the UV damage response. Immunoprecipitation of chromatin fragments revealed that CHD1 co-localizes in part with GG-NER factors. Chromatin fractionation showed that the UV-dependent recruitment of CHD1 occurs to UV lesions in histone-assembled nucleosomal DNA and that this CHD1 relocation requires the lesion sensor XPC (xeroderma pigmentosum group C). In situ immunofluorescence analyses further demonstrate that CHD1 facilitates substrate handover from XPC to the downstream TFIIH (transcription factor IIH). Consequently, CHD1 depletion slows down CPD excision and sensitizes cells to UV-induced cytotoxicity. The finding of a CHD1-driven lesion handover between sequentially acting GG-NER factors on nucleosomal histone octamers suggests that chromatin provides a recognition scaffold enabling the detection of a subset of CPDs.

Statistics

Citations

Dimensions.ai Metrics
1 citation in Web of Science®
1 citation in Scopus®
1 citation in Microsoft Academic
Google Scholar™

Altmetrics

Downloads

0 downloads since deposited on 26 Jan 2018
0 downloads since 12 months

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:05 Vetsuisse Faculty > Institute of Veterinary Pharmacology and Toxicology
Dewey Decimal Classification:570 Life sciences; biology
Uncontrolled Keywords:DNA damage, UV light, chromatin remodeling, nucleosomes, skin cancer
Language:English
Date:2017
Deposited On:26 Jan 2018 16:48
Last Modified:19 Aug 2018 12:31
Publisher:Nature Publishing Group
ISSN:0261-4189
OA Status:Closed
Free access at:Publisher DOI. An embargo period may apply.
Publisher DOI:https://doi.org/10.15252/embj.201695742
PubMed ID:29018037
Project Information:
  • : FunderFP7
  • : Grant ID266753
  • : Project TitleSCR&TOX - Stem Cells for Relevant Efficient Extended and Normalized Toxicology

Download