Header

UZH-Logo

Maintenance Infos

Chairside systems: a current review


Zaruba, Markus; Mehl, Albert (2017). Chairside systems: a current review. International Journal of Computerized Dentistry, 20(2):123-149.

Abstract

Since Cerec (Chairside Economical Restoration of Esthetic Ceramics) was introduced as the first dental chairside computer-aided design/computer-aided manufacturing (CAD/CAM) system in the mid-1980s, this technology has enjoyed growing popularity, particularly in the recent past. There has been a considerable increase in the number of available chairside systems in only the last few years. One of the main reasons for this is that intraoral scanners have become increasingly better, smaller, and faster, while the design software has become more and more user-friendly. Many work steps are now automated, and a very large range of materials is now available for dental chairside applications. These advances have driven the rapid increase in the range of indications for chairside dentistry in the areas of prosthodontics, dental implantology, and orthodontics, and have paved the way for more novel treatment and treatment planning strategies. Another reason is that intraoral scanner-based digital impression techniques are already superior to conventional impression techniques in certain respects. Moreover, the quality of fit of digitally designed dental restorations is constantly improving because of advances in milling machine technology. Due to the sheer number of new possibilities, it is only a matter of time before chairside systems become a standard component of dental practice. This article reviews the actual advantages and limitations of the chairside workflow, and provides a summary of all the available chairside systems available today.

Abstract

Since Cerec (Chairside Economical Restoration of Esthetic Ceramics) was introduced as the first dental chairside computer-aided design/computer-aided manufacturing (CAD/CAM) system in the mid-1980s, this technology has enjoyed growing popularity, particularly in the recent past. There has been a considerable increase in the number of available chairside systems in only the last few years. One of the main reasons for this is that intraoral scanners have become increasingly better, smaller, and faster, while the design software has become more and more user-friendly. Many work steps are now automated, and a very large range of materials is now available for dental chairside applications. These advances have driven the rapid increase in the range of indications for chairside dentistry in the areas of prosthodontics, dental implantology, and orthodontics, and have paved the way for more novel treatment and treatment planning strategies. Another reason is that intraoral scanner-based digital impression techniques are already superior to conventional impression techniques in certain respects. Moreover, the quality of fit of digitally designed dental restorations is constantly improving because of advances in milling machine technology. Due to the sheer number of new possibilities, it is only a matter of time before chairside systems become a standard component of dental practice. This article reviews the actual advantages and limitations of the chairside workflow, and provides a summary of all the available chairside systems available today.

Statistics

Citations

Dimensions.ai Metrics
34 citations in Web of Science®
31 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

14 downloads since deposited on 12 Jan 2018
0 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, further contribution
Communities & Collections:04 Faculty of Medicine > Center for Dental Medicine > Clinic of Conservative and Preventive Dentistry
Dewey Decimal Classification:610 Medicine & health
Scopus Subject Areas:Health Sciences > Dentistry (miscellaneous)
Physical Sciences > Computer Science Applications
Language:German
Date:2017
Deposited On:12 Jan 2018 12:39
Last Modified:06 Oct 2022 12:37
Publisher:Quintessence Publishing
ISSN:1463-4201
OA Status:Closed
PubMed ID:28630955