Header

UZH-Logo

Maintenance Infos

A guide to analyzing biodiversity experiments


Schmid, Bernhard; Baruffol, Martin; Wang, Zhiheng; Niklaus, Pascal A (2017). A guide to analyzing biodiversity experiments. Journal of Plant Ecology, 10(1):91-110.

Abstract

Aims: The aim of this guide is to provide practical help for ecologists who analyze data from biodiversity–ecosystem functioning experiments. Our approach differs from others in the use of least squares-based linear models (LMs) together with restricted maximum likelihood-based mixed models (MMs) for the analysis of hierarchical data. An original data set containing diameter and height of young trees grown in monocultures, 2- or 4-species mixtures under ambient light or shade is used as an example.
Methods: Starting with a simple LM, basic features of model fitting and the subsequent analysis of variance (ANOVA) for significance tests are summarized. From this, more complex models are developed. We use the statistical software R for model fitting and to demonstrate similarities and complementarities between LMs and MMs. The formation of contrasts and the use of error (LMs) or random-effects (MMs) terms to account for hierarchical data structure in ANOVAs are explained.
Important Findings: Data from biodiversity experiments can be analyzed at the level of entire plant communities (plots) and plant individuals. The basic explanatory term is species composition, which can be divided into contrasts in many ways depending on specific biological hypotheses. Typically, these contrasts code for aspects of species richness or the presence of particular species. For significance tests in ANOVAs, contrast terms generally are compared with remaining variation of the explanatory terms from which they have been ‘carved out’. Once a final model has been selected, parameters (e.g. means or slopes for fixed-effects terms and variance components for error or random-effects terms) can be estimated to indicate the direction and size of effects.

Abstract

Aims: The aim of this guide is to provide practical help for ecologists who analyze data from biodiversity–ecosystem functioning experiments. Our approach differs from others in the use of least squares-based linear models (LMs) together with restricted maximum likelihood-based mixed models (MMs) for the analysis of hierarchical data. An original data set containing diameter and height of young trees grown in monocultures, 2- or 4-species mixtures under ambient light or shade is used as an example.
Methods: Starting with a simple LM, basic features of model fitting and the subsequent analysis of variance (ANOVA) for significance tests are summarized. From this, more complex models are developed. We use the statistical software R for model fitting and to demonstrate similarities and complementarities between LMs and MMs. The formation of contrasts and the use of error (LMs) or random-effects (MMs) terms to account for hierarchical data structure in ANOVAs are explained.
Important Findings: Data from biodiversity experiments can be analyzed at the level of entire plant communities (plots) and plant individuals. The basic explanatory term is species composition, which can be divided into contrasts in many ways depending on specific biological hypotheses. Typically, these contrasts code for aspects of species richness or the presence of particular species. For significance tests in ANOVAs, contrast terms generally are compared with remaining variation of the explanatory terms from which they have been ‘carved out’. Once a final model has been selected, parameters (e.g. means or slopes for fixed-effects terms and variance components for error or random-effects terms) can be estimated to indicate the direction and size of effects.

Statistics

Citations

Dimensions.ai Metrics
25 citations in Web of Science®
24 citations in Scopus®
23 citations in Microsoft Academic
Google Scholar™

Altmetrics

Downloads

6 downloads since deposited on 18 Jan 2018
6 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:07 Faculty of Science > Institute of Evolutionary Biology and Environmental Studies
Dewey Decimal Classification:570 Life sciences; biology
590 Animals (Zoology)
Language:English
Date:2017
Deposited On:18 Jan 2018 17:06
Last Modified:19 Feb 2018 10:22
Publisher:Oxford University Press
ISSN:1752-9921
OA Status:Hybrid
Free access at:Publisher DOI. An embargo period may apply.
Publisher DOI:https://doi.org/10.1093/jpe/rtw107

Download

Download PDF  'A guide to analyzing biodiversity experiments'.
Preview
Content: Published Version
Filetype: PDF
Size: 3MB
View at publisher
Licence: Creative Commons: Attribution-NonCommercial 4.0 International (CC BY-NC 4.0)