Abstract
The monitoring and assessment of a broadly neutralizing antibody (bnAb) based HIV-1 vaccine require detailed measurements of HIV-1 binding antibody responses to support the detection of correlates of protection. Here we describe the development of a flexible, high-throughput microsphere based multiplex assay system that allows monitoring complex binding antibody signatures. Studying a panel of 13 HIV-1 antigens in a parallel assessment of different IgG subclasses (IgG1, IgG2 and IgG3) we demonstrate the potential of our strategy. The technical advances we describe include means to improve antigen reactivity using directed neutravidin-biotin immobilization of antigens and biotin saturation to reduce background. A particular emphasis of our study was to provide tools for the assessment of reproducibility and stability of the assay system and strategies to control for variations allowing the application in highthroughput assays, where reliability of single measurements needs to be guaranteed.