Header

UZH-Logo

Maintenance Infos

Expression of GnRH receptor in the canine corpus luteum, and luteal function following deslorelin acetate-induced puberty delay


Kaya, D; Gram, A; Kowalewski, Mariusz P; Schäfer-Somi, S; Kuru, M; Boos, Alois; Aslan, S (2017). Expression of GnRH receptor in the canine corpus luteum, and luteal function following deslorelin acetate-induced puberty delay. Reproduction in Domestic Animals, 52(6):1104-1112.

Abstract

The goals of this study were as follows: (Experiment 1) to examine the basic capability of canine corpora lutea (CL) to respond to GnRH by assessing expression of gonadotropin-releasing hormone receptor (GnRH-R) in luteal samples collected throughout the luteal lifespan from non-pregnant dogs, and (Experiment 2) to investigate the effects of pre-pubertal application of the GnRH agonist deslorelin acetate on luteal function following the first oestrus. Mature CL were collected during the mid-luteal phase (days 30–45) from treated and control bitches. Transcript levels of several factors were determined: estrogen receptors (ESR1/ERα, ESR2/ERβ), progesterone (P4)-receptor (PGR), prolactin receptor (PRLR), PGE2-synthase (PTGES) and PGE2 receptors (PTGER2/EP2, PTGER4/EP4), vascular endothelial growth factor (VEGFA) and VEGF receptors (VEGFR1 and VEGFR2), cyclooxygenase 2 (COX2/PTGS2), steroidogenic acute regulatory protein (STAR) and 3β-hydroxysteroid dehydrogenase (3βHSD). Additionally, levels of Kisspeptin 1 (Kiss1) and its receptor (KISS1-R) were evaluated. Although generally low, GnRH-R expression was time dependent and was elevated during early dioestrus, with a significant decrease towards luteal regression. In deslorelin-treated and control dogs, its expression was either low or frequently below the detection limit. EP2 and VEGFR1 were higher in the treated group, which could be caused by a feedback mechanism after long-term suppression of reproductive activity. Despite large individual variations, 3βHSD was higher in the deslorelin-treated group. This, along with unchanged STAR expression, was apparently not mirrored in increased luteal functionality, because similar P4 levels were detected in both groups. Finally, the deslorelin-mediated long-term delay of puberty does not have negative carry-over effects on subsequent ovarian functionality in bitches.

Abstract

The goals of this study were as follows: (Experiment 1) to examine the basic capability of canine corpora lutea (CL) to respond to GnRH by assessing expression of gonadotropin-releasing hormone receptor (GnRH-R) in luteal samples collected throughout the luteal lifespan from non-pregnant dogs, and (Experiment 2) to investigate the effects of pre-pubertal application of the GnRH agonist deslorelin acetate on luteal function following the first oestrus. Mature CL were collected during the mid-luteal phase (days 30–45) from treated and control bitches. Transcript levels of several factors were determined: estrogen receptors (ESR1/ERα, ESR2/ERβ), progesterone (P4)-receptor (PGR), prolactin receptor (PRLR), PGE2-synthase (PTGES) and PGE2 receptors (PTGER2/EP2, PTGER4/EP4), vascular endothelial growth factor (VEGFA) and VEGF receptors (VEGFR1 and VEGFR2), cyclooxygenase 2 (COX2/PTGS2), steroidogenic acute regulatory protein (STAR) and 3β-hydroxysteroid dehydrogenase (3βHSD). Additionally, levels of Kisspeptin 1 (Kiss1) and its receptor (KISS1-R) were evaluated. Although generally low, GnRH-R expression was time dependent and was elevated during early dioestrus, with a significant decrease towards luteal regression. In deslorelin-treated and control dogs, its expression was either low or frequently below the detection limit. EP2 and VEGFR1 were higher in the treated group, which could be caused by a feedback mechanism after long-term suppression of reproductive activity. Despite large individual variations, 3βHSD was higher in the deslorelin-treated group. This, along with unchanged STAR expression, was apparently not mirrored in increased luteal functionality, because similar P4 levels were detected in both groups. Finally, the deslorelin-mediated long-term delay of puberty does not have negative carry-over effects on subsequent ovarian functionality in bitches.

Statistics

Citations

Dimensions.ai Metrics
1 citation in Web of Science®
1 citation in Scopus®
Google Scholar™

Altmetrics

Downloads

0 downloads since deposited on 29 Jan 2018
0 downloads since 12 months

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:05 Vetsuisse Faculty > Institute of Veterinary Anatomy
Dewey Decimal Classification:570 Life sciences; biology
Uncontrolled Keywords:GnRH receptor, deslorelin, domestic dog (Canis familiaris), luteal function, puberty delay
Language:English
Date:2017
Deposited On:29 Jan 2018 09:14
Last Modified:19 Feb 2018 10:30
Publisher:Wiley-Blackwell Publishing, Inc.
ISSN:0936-6768
Additional Information:For accepted manuscripts: This is the peer reviewed version of the following article: [FULL CITE], which has been published in final form at doi.org/10.1111/rda.13038. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving (http://olabout.wiley.com/WileyCDA/Section/id-820227.html#terms).
OA Status:Closed
Publisher DOI:https://doi.org/10.1111/rda.13038
PubMed ID:28963736

Download