Header

UZH-Logo

Maintenance Infos

Heterogeneous clinical spectrum of DNAJC12-deficient hyperphenylalaninemia: from attention deficit to severe dystonia and intellectual disability


van Spronsen, Francjan J; Himmelreich, Nastassja; Rüfenacht, Véronique; Shen, Nan; Vliet, Danique van; Al-Owain, Mohammed; Ramzan, Khushnooda; Alkhalifi, Salwa M; Lunsing, Roelineke J; Heiner-Fokkema, Rebecca M; Rassi, Anahita; Gemperle-Britschgi, Corinne; Hoffmann, Georg F; Blau, Nenad; Thöny, Beat (2018). Heterogeneous clinical spectrum of DNAJC12-deficient hyperphenylalaninemia: from attention deficit to severe dystonia and intellectual disability. Journal of Medical Genetics, 55(4):249-253.

Abstract

BACKGROUND: Autosomal recessive mutations in DNAJC12, encoding a cochaperone of HSP70 with hitherto unknown function, were recently described to lead to hyperphenylalaninemia, central monoamine neurotransmitter (dopamine and serotonin) deficiency, dystonia and intellectual disability in six subjects affected by homozygous variants.
OBJECTIVE: Patients exhibiting hyperphenylalaninemia in whom deficiencies in hepatic phenylalanine hydroxylase and tetrahydrobiopterin cofactor metabolism had been excluded were subsequently analysed for DNAJC12 variants.
METHODS: To analyse DNAJC12, genomic DNA from peripheral blood (Sanger sequencing), as well as quantitative messenger RNA (Real Time Quantitative Polymerase Chain Reaction (RT-qPCR)) and protein expression (Western blot) from primary skin fibroblasts were performed.
RESULTS: We describe five additional patients from three unrelated families with homozygosity/compound heterozygosity in DNAJC12 with three novel variants: c.85delC/p.Gln29Lysfs*38, c.596G>T/p.*199Leuext*42 and c.214C>T/p.(Arg72*). In contrast to previously reported DNAJC12-deficient patients, all five cases showed a very mild neurological phenotype. In two subjects, cerebrospinal fluid and primary skin fibroblasts were analysed showing similarly low 5-hydroxyindolacetic acid and homovanillic acid concentrations but more reduced expressions of mRNA and DNAJC12 compared with previously described patients. All patients responded to tetrahydrobiopterin challenge by lowering blood phenylalanine levels.
CONCLUSIONS: DNAJC12 deficiency appears to result in a more heterogeneous neurological phenotype than originally described. While early identification and institution of treatment with tetrahydrobiopterin and neurotransmitter precursors is crucial to ensure optimal neurological outcome in DNAJC12-deficient patients with a severe phenotype, optimal treatment for patients with a milder phenotype remains to be defined.

Abstract

BACKGROUND: Autosomal recessive mutations in DNAJC12, encoding a cochaperone of HSP70 with hitherto unknown function, were recently described to lead to hyperphenylalaninemia, central monoamine neurotransmitter (dopamine and serotonin) deficiency, dystonia and intellectual disability in six subjects affected by homozygous variants.
OBJECTIVE: Patients exhibiting hyperphenylalaninemia in whom deficiencies in hepatic phenylalanine hydroxylase and tetrahydrobiopterin cofactor metabolism had been excluded were subsequently analysed for DNAJC12 variants.
METHODS: To analyse DNAJC12, genomic DNA from peripheral blood (Sanger sequencing), as well as quantitative messenger RNA (Real Time Quantitative Polymerase Chain Reaction (RT-qPCR)) and protein expression (Western blot) from primary skin fibroblasts were performed.
RESULTS: We describe five additional patients from three unrelated families with homozygosity/compound heterozygosity in DNAJC12 with three novel variants: c.85delC/p.Gln29Lysfs*38, c.596G>T/p.*199Leuext*42 and c.214C>T/p.(Arg72*). In contrast to previously reported DNAJC12-deficient patients, all five cases showed a very mild neurological phenotype. In two subjects, cerebrospinal fluid and primary skin fibroblasts were analysed showing similarly low 5-hydroxyindolacetic acid and homovanillic acid concentrations but more reduced expressions of mRNA and DNAJC12 compared with previously described patients. All patients responded to tetrahydrobiopterin challenge by lowering blood phenylalanine levels.
CONCLUSIONS: DNAJC12 deficiency appears to result in a more heterogeneous neurological phenotype than originally described. While early identification and institution of treatment with tetrahydrobiopterin and neurotransmitter precursors is crucial to ensure optimal neurological outcome in DNAJC12-deficient patients with a severe phenotype, optimal treatment for patients with a milder phenotype remains to be defined.

Statistics

Citations

Dimensions.ai Metrics
3 citations in Web of Science®
3 citations in Scopus®
5 citations in Microsoft Academic
Google Scholar™

Altmetrics

Downloads

0 downloads since deposited on 17 Jan 2018
0 downloads since 12 months

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > University Children's Hospital Zurich > Medical Clinic
04 Faculty of Medicine > Center for Integrative Human Physiology
Dewey Decimal Classification:610 Medicine & health
Language:English
Date:2018
Deposited On:17 Jan 2018 14:28
Last Modified:23 Mar 2018 02:02
Publisher:BMJ Publishing Group
ISSN:0022-2593
OA Status:Closed
Publisher DOI:https://doi.org/10.1136/jmedgenet-2017-104875
PubMed ID:28794131

Download