Header

UZH-Logo

Maintenance Infos

SRF and MKL1 Independently Inhibit Brown Adipogenesis


Rosenwald, Matthias; Efthymiou, Vissarion; Opitz, Lennart; Wolfrum, Christian (2017). SRF and MKL1 Independently Inhibit Brown Adipogenesis. PLoS ONE, 12(1):e0170643.

Abstract

Active brown adipose tissue is responsible for non-shivering thermogenesis in mammals which affects energy homeostasis. The molecular mechanisms underlying this activation as well as the formation and activation of brite adipocytes have gained increasing interest in recent years as they might be utilized to regulate systemic metabolism. We show here that the transcriptional regulators SRF and MKL1 both act as repressors of brown adipogenesis. Loss-of-function of these transcription factors leads to a significant induction of brown adipocyte differentiation, increased levels of UCP1 and other thermogenic genes as well as increased respiratory function, while SRF induction exerts the opposite effects. Interestingly, we observed that knockdown of MKL1 does not lead to a reduced expression of typical SRF target genes and that the SRF/MKL1 inhibitor CCG-1423 had no significant effects on brown adipocyte differentiation. Contrary, knockdown of MKL1 induces a significant increase in the transcriptional activity of PPARγ target genes and MKL1 interacts with PPARγ, suggesting that SRF and MKL1 independently inhibit brown adipogenesis and that MKL1 exerts its effect mainly by modulating PPARγ activity.

Abstract

Active brown adipose tissue is responsible for non-shivering thermogenesis in mammals which affects energy homeostasis. The molecular mechanisms underlying this activation as well as the formation and activation of brite adipocytes have gained increasing interest in recent years as they might be utilized to regulate systemic metabolism. We show here that the transcriptional regulators SRF and MKL1 both act as repressors of brown adipogenesis. Loss-of-function of these transcription factors leads to a significant induction of brown adipocyte differentiation, increased levels of UCP1 and other thermogenic genes as well as increased respiratory function, while SRF induction exerts the opposite effects. Interestingly, we observed that knockdown of MKL1 does not lead to a reduced expression of typical SRF target genes and that the SRF/MKL1 inhibitor CCG-1423 had no significant effects on brown adipocyte differentiation. Contrary, knockdown of MKL1 induces a significant increase in the transcriptional activity of PPARγ target genes and MKL1 interacts with PPARγ, suggesting that SRF and MKL1 independently inhibit brown adipogenesis and that MKL1 exerts its effect mainly by modulating PPARγ activity.

Statistics

Citations

Altmetrics

Downloads

6 downloads since deposited on 26 Jan 2018
6 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > Functional Genomics Center Zurich
Dewey Decimal Classification:570 Life sciences; biology
610 Medicine & health
Language:English
Date:2017
Deposited On:26 Jan 2018 12:07
Last Modified:19 Aug 2018 13:16
Publisher:Public Library of Science (PLoS)
ISSN:1932-6203
OA Status:Gold
Free access at:PubMed ID. An embargo period may apply.
Publisher DOI:https://doi.org/10.1371/journal.pone.0170643
PubMed ID:28125644
Project Information:
  • : FunderSNSF
  • : Grant ID31003A_162887
  • : Project TitleAnalysis of brite adipocyte formation and function

Download

Download PDF  'SRF and MKL1 Independently Inhibit Brown Adipogenesis'.
Preview
Content: Published Version
Filetype: PDF
Size: 2MB
View at publisher
Licence: Creative Commons: Attribution 4.0 International (CC BY 4.0)