Header

UZH-Logo

Maintenance Infos

Gray matter and white matter changes in non-demented amyotrophic lateral sclerosis patients with or without cognitive impairment: A combined voxel-based morphometry and tract-based spatial statistics whole-brain analysis


Christidi, Foteini; Karavasilis, Efstratios; Riederer, Franz; Zalonis, Ioannis; Ferentinos, Panagiotis; Velonakis, Georgios; Xirou, Sophia; Rentzos, Michalis; Argiropoulos, Georgios; Zouvelou, Vasiliki; Zambelis, Thomas; Athanasakos, Athanasios; Toulas, Panagiotis; Vadikolias, Konstantinos; Efstathopoulos, Efstathios; Kollias, Spyros; Karandreas, Nikolaos; Kelekis, Nikolaos; Evdokimidis, Ioannis (2018). Gray matter and white matter changes in non-demented amyotrophic lateral sclerosis patients with or without cognitive impairment: A combined voxel-based morphometry and tract-based spatial statistics whole-brain analysis. Brain imaging and behavior, 12(2):547-563.

Abstract

The phenotypic heterogeneity in amyotrophic lateral sclerosis (ALS) implies that patients show structural changes within but also beyond the motor cortex and corticospinal tract and furthermore outside the frontal lobes, even if frank dementia is not detected. The aim of the present study was to investigate both gray matter (GM) and white matter (WM) changes in non-demented amyotrophic lateral sclerosis (ALS) patients with or without cognitive impairment (ALS-motor and ALS-plus, respectively). Nineteen ALS-motor, 31 ALS-plus and 25 healthy controls (HC) underwent 3D-T1-weighted and 30-directional diffusion-weighted imaging on a 3 T MRI scanner. Voxel-based morphometry and tract-based spatial-statistics analysis were performed to examine GM volume (GMV) changes and WM differences in fractional anisotropy (FA), axial and radial diffusivity (AD, RD, respectively). Compared to HC, ALS-motor patients showed decreased GMV in frontal and cerebellar areas and increased GMV in right supplementary motor area, while ALS-plus patients showed diffuse GMV reduction in primary motor cortex bilaterally, frontotemporal areas, cerebellum and basal ganglia. ALS-motor patients had increased GMV in left precuneus compared to ALS-plus patients. We also found decreased FA and increased RD in the corticospinal tract bilaterally, the corpus callosum and extra-motor tracts in ALS-motor patients, and decreased FA and increased AD and RD in motor and several WM tracts in ALS-plus patients, compared to HC. Multimodal neuroimaging confirms motor and extra-motor GM and WM abnormalities in non-demented cognitively-impaired ALS patients (ALS-plus) and identifies early extra-motor brain pathology in ALS patients without cognitive impairment (ALS-motor).

Abstract

The phenotypic heterogeneity in amyotrophic lateral sclerosis (ALS) implies that patients show structural changes within but also beyond the motor cortex and corticospinal tract and furthermore outside the frontal lobes, even if frank dementia is not detected. The aim of the present study was to investigate both gray matter (GM) and white matter (WM) changes in non-demented amyotrophic lateral sclerosis (ALS) patients with or without cognitive impairment (ALS-motor and ALS-plus, respectively). Nineteen ALS-motor, 31 ALS-plus and 25 healthy controls (HC) underwent 3D-T1-weighted and 30-directional diffusion-weighted imaging on a 3 T MRI scanner. Voxel-based morphometry and tract-based spatial-statistics analysis were performed to examine GM volume (GMV) changes and WM differences in fractional anisotropy (FA), axial and radial diffusivity (AD, RD, respectively). Compared to HC, ALS-motor patients showed decreased GMV in frontal and cerebellar areas and increased GMV in right supplementary motor area, while ALS-plus patients showed diffuse GMV reduction in primary motor cortex bilaterally, frontotemporal areas, cerebellum and basal ganglia. ALS-motor patients had increased GMV in left precuneus compared to ALS-plus patients. We also found decreased FA and increased RD in the corticospinal tract bilaterally, the corpus callosum and extra-motor tracts in ALS-motor patients, and decreased FA and increased AD and RD in motor and several WM tracts in ALS-plus patients, compared to HC. Multimodal neuroimaging confirms motor and extra-motor GM and WM abnormalities in non-demented cognitively-impaired ALS patients (ALS-plus) and identifies early extra-motor brain pathology in ALS patients without cognitive impairment (ALS-motor).

Statistics

Citations

Dimensions.ai Metrics
1 citation in Web of Science®
4 citations in Scopus®
4 citations in Microsoft Academic
Google Scholar™

Altmetrics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > University Hospital Zurich > Clinic for Neuroradiology
Dewey Decimal Classification:610 Medicine & health
Language:English
Date:2018
Deposited On:01 Feb 2018 15:15
Last Modified:03 Apr 2018 01:03
Publisher:Springer
ISSN:1931-7557
OA Status:Closed
Publisher DOI:https://doi.org/10.1007/s11682-017-9722-y
PubMed ID:28425061

Download

Full text not available from this repository.
View at publisher

Get full-text in a library