Header

UZH-Logo

Maintenance Infos

The "don't eat me" signal CD47 is a novel diagnostic biomarker and potential therapeutic target for diffuse malignant mesothelioma


Schürch, Christian M; Forster, Stefan; Brühl, Frido; Yang, Sara H; Felley-Bosco, Emanuela; Hewer, Ekkehard (2017). The "don't eat me" signal CD47 is a novel diagnostic biomarker and potential therapeutic target for diffuse malignant mesothelioma. OncoImmunology, 7(1):e1373235.

Abstract

Diffuse malignant mesothelioma (DMM) is one of the prognostically most discouraging cancers with median survivals of only 12-22 months. Due to its insidious onset and delayed detection, DMM is often at an advanced stage at diagnosis and is considered incurable. Combined chemo- and radiotherapy followed by surgery only marginally affect outcome at the cost of significant morbidity. Because of the long time period between exposure to asbestos and disease onset, the incidence of DMM is still rising and predicted to peak around 2020. Novel markers for the reliable diagnosis of DMM in body cavity effusion specimens as well as more effective, targeted therapies are urgently needed. Here, we show that the "don't eat me" signalling molecule CD47, which inhibits phagocytosis by binding to signal regulatory protein α on macrophages, is overexpressed in DMM cells. A two-marker panel of high CD47 expression and BRCA1-associated protein 1 (BAP-1) deficiency had a sensitivity of 78% and specificity of 100% in discriminating DMM tumour cells from reactive mesothelial cells in effusions, which is superior to the currently used four-marker combination of BAP-1, glucose transporter type 1, epithelial membrane antigen and desmin. In addition, blocking CD47 inhibited growth and promoted phagocytosis of DMM cell lines by macrophages in vitro. Furthermore, DMM tumours in surgical specimens from patients as well as in a mouse DMM model expressed high levels of CD47 and were heavily infiltrated by macrophages. Our study demonstrates that CD47 is an accurate novel diagnostic DMM biomarker and that blocking CD47 may represent a promising therapeutic strategy for DMM.

Abstract

Diffuse malignant mesothelioma (DMM) is one of the prognostically most discouraging cancers with median survivals of only 12-22 months. Due to its insidious onset and delayed detection, DMM is often at an advanced stage at diagnosis and is considered incurable. Combined chemo- and radiotherapy followed by surgery only marginally affect outcome at the cost of significant morbidity. Because of the long time period between exposure to asbestos and disease onset, the incidence of DMM is still rising and predicted to peak around 2020. Novel markers for the reliable diagnosis of DMM in body cavity effusion specimens as well as more effective, targeted therapies are urgently needed. Here, we show that the "don't eat me" signalling molecule CD47, which inhibits phagocytosis by binding to signal regulatory protein α on macrophages, is overexpressed in DMM cells. A two-marker panel of high CD47 expression and BRCA1-associated protein 1 (BAP-1) deficiency had a sensitivity of 78% and specificity of 100% in discriminating DMM tumour cells from reactive mesothelial cells in effusions, which is superior to the currently used four-marker combination of BAP-1, glucose transporter type 1, epithelial membrane antigen and desmin. In addition, blocking CD47 inhibited growth and promoted phagocytosis of DMM cell lines by macrophages in vitro. Furthermore, DMM tumours in surgical specimens from patients as well as in a mouse DMM model expressed high levels of CD47 and were heavily infiltrated by macrophages. Our study demonstrates that CD47 is an accurate novel diagnostic DMM biomarker and that blocking CD47 may represent a promising therapeutic strategy for DMM.

Statistics

Citations

Dimensions.ai Metrics
30 citations in Web of Science®
34 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

90 downloads since deposited on 30 Jan 2018
2 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > University Hospital Zurich > Clinic for Thoracic Surgery
Dewey Decimal Classification:610 Medicine & health
Scopus Subject Areas:Health Sciences > Immunology and Allergy
Life Sciences > Immunology
Health Sciences > Oncology
Language:English
Date:2017
Deposited On:30 Jan 2018 10:35
Last Modified:25 Nov 2023 08:00
Publisher:Taylor & Francis
ISSN:2162-4011
OA Status:Gold
Free access at:PubMed ID. An embargo period may apply.
Publisher DOI:https://doi.org/10.1080/2162402X.2017.1373235
PubMed ID:29296529
  • Content: Published Version
  • Language: English
  • Licence: Creative Commons: Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0)