Header

UZH-Logo

Maintenance Infos

Immediate and delayed repair bond strength of a new ormocer resin restorative material as a function of mechanical and chemical surface conditioning methods


El-Askary, Farid Sabry; Salah, Maha; Anwar, Mohammed Nasser; Özcan, Mutlu (2017). Immediate and delayed repair bond strength of a new ormocer resin restorative material as a function of mechanical and chemical surface conditioning methods. Journal of Adhesion Science and Technology, 31(3):310-326.

Abstract

This study evaluated the μ-shear repair bond strength (μSBS) of a new ormocer restorative material as a function of repair time and repair protocol. Ormocer disks (N = 140) (Admira Fusion, Voco) were prepared and divided into 14 groups: Factor 1: Bonding protocol (No Conditioning, Admira Bond, Futurabond M+, Silane/Admira bond, Silane/Futurabond M+, Ceramic repair system, Silane/Cimara bond) and Factor 2: Repair procedure time (immediate versus delayed). Each disk received two ormocer micro-cylinders. Half of the disks were repaired immediately (24 h) and the other half after six-month water storage. Shear test was run at cross-head speed of 0.5 mm/min. Debonded specimens were evaluated for failure mode and SEM analysis was performed. Data were analyzed using two-way ANOVA and Tukey’s tests (p < 0.05). Both the repair time and the surface conditioning method showed a significant effect on the repair μSBS (MPa) of the ormocer material (p = 0.000). When immediate repair strengths were considered, all repair protocols tested reached the mean bond achieved based on oxygen-inhibited layer (10.8 ± 2.4 MPa), except. Futurabond M+(13.9 ± 3.4) and Silane/Cimara adhesives (16.3 ± 2.9) showed significantly higher μSBS (p = 0.001 and p = 0.000, respectively). For the delayed repair, non-conditioned (5 ± 1.7), showed significantly lower values compared to those of the other protocols (p < 0.05). Failure modes were predominantly adhesive type (immediate:95% and delayed:90%). No cohesive failures were observed either in the substrate or in the repair material.

Abstract

This study evaluated the μ-shear repair bond strength (μSBS) of a new ormocer restorative material as a function of repair time and repair protocol. Ormocer disks (N = 140) (Admira Fusion, Voco) were prepared and divided into 14 groups: Factor 1: Bonding protocol (No Conditioning, Admira Bond, Futurabond M+, Silane/Admira bond, Silane/Futurabond M+, Ceramic repair system, Silane/Cimara bond) and Factor 2: Repair procedure time (immediate versus delayed). Each disk received two ormocer micro-cylinders. Half of the disks were repaired immediately (24 h) and the other half after six-month water storage. Shear test was run at cross-head speed of 0.5 mm/min. Debonded specimens were evaluated for failure mode and SEM analysis was performed. Data were analyzed using two-way ANOVA and Tukey’s tests (p < 0.05). Both the repair time and the surface conditioning method showed a significant effect on the repair μSBS (MPa) of the ormocer material (p = 0.000). When immediate repair strengths were considered, all repair protocols tested reached the mean bond achieved based on oxygen-inhibited layer (10.8 ± 2.4 MPa), except. Futurabond M+(13.9 ± 3.4) and Silane/Cimara adhesives (16.3 ± 2.9) showed significantly higher μSBS (p = 0.001 and p = 0.000, respectively). For the delayed repair, non-conditioned (5 ± 1.7), showed significantly lower values compared to those of the other protocols (p < 0.05). Failure modes were predominantly adhesive type (immediate:95% and delayed:90%). No cohesive failures were observed either in the substrate or in the repair material.

Statistics

Citations

Altmetrics

Downloads

61 downloads since deposited on 01 Feb 2018
51 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > Center for Dental Medicine > Clinic of Reconstructive Dentistry
Dewey Decimal Classification:610 Medicine & health
Language:English
Date:2017
Deposited On:01 Feb 2018 14:30
Last Modified:24 Sep 2019 23:10
Publisher:Taylor & Francis
ISSN:0169-4243
Additional Information:This is an Accepted Manuscript of an article published by Taylor & Francis in Journal of Adhesion Science and Technology on 09.08.2016, available online: http://wwww.tandfonline.com/10.1080/01694243.2016.1215012.
OA Status:Green
Publisher DOI:https://doi.org/10.1080/01694243.2016.1215012

Download

Green Open Access