Header

UZH-Logo

Maintenance Infos

A simple method to reconstruct the molar mass signal of respiratory gas to assess small airways with a double-tracer gas single-breath washout


Port, Johannes; Tao, Ziran; Junger, Annika; Joppek, Christoph; Tempel, Philipp; Husemann, Kim; Singer, Florian; Latzin, Philipp; Yammine, Sophie; Nagel, Joachim H; Kohlhäufl, Martin (2017). A simple method to reconstruct the molar mass signal of respiratory gas to assess small airways with a double-tracer gas single-breath washout. Medical & Biological Engineering & Computing, 55(11):1975-1987.

Abstract

For the assessment of small airway diseases, a noninvasive double-tracer gas single-breath washout (DTG-SBW) with sulfur hexafluoride (SF6) and helium (He) as tracer components has been proposed. It is assumed that small airway diseases may produce typical ventilation inhomogeneities which can be detected within one single tidal breath, when using two tracer components. Characteristic parameters calculated from a relative molar mass (MM) signal of the airflow during the washout expiration phase are analyzed. The DTG-SBW signal is acquired by subtracting a reconstructed MM signal without tracer gas from the signal measured with an ultrasonic sensor during in- and exhalation of the double-tracer gas for one tidal breath. In this paper, a simple method to determine the reconstructed MM signal is presented. Measurements on subjects with and without obstructive lung diseases including the small airways have shown high reliability and reproducibility of this method.

Abstract

For the assessment of small airway diseases, a noninvasive double-tracer gas single-breath washout (DTG-SBW) with sulfur hexafluoride (SF6) and helium (He) as tracer components has been proposed. It is assumed that small airway diseases may produce typical ventilation inhomogeneities which can be detected within one single tidal breath, when using two tracer components. Characteristic parameters calculated from a relative molar mass (MM) signal of the airflow during the washout expiration phase are analyzed. The DTG-SBW signal is acquired by subtracting a reconstructed MM signal without tracer gas from the signal measured with an ultrasonic sensor during in- and exhalation of the double-tracer gas for one tidal breath. In this paper, a simple method to determine the reconstructed MM signal is presented. Measurements on subjects with and without obstructive lung diseases including the small airways have shown high reliability and reproducibility of this method.

Statistics

Citations

Altmetrics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > University Children's Hospital Zurich > Medical Clinic
Dewey Decimal Classification:610 Medicine & health
Language:English
Date:November 2017
Deposited On:02 Feb 2018 13:34
Last Modified:19 Feb 2018 10:52
Publisher:Springer
ISSN:0140-0118
OA Status:Closed
Publisher DOI:https://doi.org/10.1007/s11517-017-1633-y
PubMed ID:28357624

Download

Full text not available from this repository.
View at publisher

Get full-text in a library