Header

UZH-Logo

Maintenance Infos

Do COPD subtypes really exist? COPD heterogeneity and clustering in 10 independent cohorts


Abstract

BACKGROUND: COPD is a heterogeneous disease, but there is little consensus on specific definitions for COPD subtypes. Unsupervised clustering offers the promise of 'unbiased' data-driven assessment of COPD heterogeneity. Multiple groups have identified COPD subtypes using cluster analysis, but there has been no systematic assessment of the reproducibility of these subtypes.
OBJECTIVE: We performed clustering analyses across 10 cohorts in North America and Europe in order to assess the reproducibility of (1) correlation patterns of key COPD-related clinical characteristics and (2) clustering results.
METHODS: We studied 17 146 individuals with COPD using identical methods and common COPD-related characteristics across cohorts (FEV1, FEV1/FVC, FVC, body mass index, Modified Medical Research Council score, asthma and cardiovascular comorbid disease). Correlation patterns between these clinical characteristics were assessed by principal components analysis (PCA). Cluster analysis was performed using k-medoids and hierarchical clustering, and concordance of clustering solutions was quantified with normalised mutual information (NMI), a metric that ranges from 0 to 1 with higher values indicating greater concordance.
RESULTS: The reproducibility of COPD clustering subtypes across studies was modest (median NMI range 0.17-0.43). For methods that excluded individuals that did not clearly belong to any cluster, agreement was better but still suboptimal (median NMI range 0.32-0.60). Continuous representations of COPD clinical characteristics derived from PCA were much more consistent across studies.
CONCLUSIONS: Identical clustering analyses across multiple COPD cohorts showed modest reproducibility. COPD heterogeneity is better characterised by continuous disease traits coexisting in varying degrees within the same individual, rather than by mutually exclusive COPD subtypes.

Abstract

BACKGROUND: COPD is a heterogeneous disease, but there is little consensus on specific definitions for COPD subtypes. Unsupervised clustering offers the promise of 'unbiased' data-driven assessment of COPD heterogeneity. Multiple groups have identified COPD subtypes using cluster analysis, but there has been no systematic assessment of the reproducibility of these subtypes.
OBJECTIVE: We performed clustering analyses across 10 cohorts in North America and Europe in order to assess the reproducibility of (1) correlation patterns of key COPD-related clinical characteristics and (2) clustering results.
METHODS: We studied 17 146 individuals with COPD using identical methods and common COPD-related characteristics across cohorts (FEV1, FEV1/FVC, FVC, body mass index, Modified Medical Research Council score, asthma and cardiovascular comorbid disease). Correlation patterns between these clinical characteristics were assessed by principal components analysis (PCA). Cluster analysis was performed using k-medoids and hierarchical clustering, and concordance of clustering solutions was quantified with normalised mutual information (NMI), a metric that ranges from 0 to 1 with higher values indicating greater concordance.
RESULTS: The reproducibility of COPD clustering subtypes across studies was modest (median NMI range 0.17-0.43). For methods that excluded individuals that did not clearly belong to any cluster, agreement was better but still suboptimal (median NMI range 0.32-0.60). Continuous representations of COPD clinical characteristics derived from PCA were much more consistent across studies.
CONCLUSIONS: Identical clustering analyses across multiple COPD cohorts showed modest reproducibility. COPD heterogeneity is better characterised by continuous disease traits coexisting in varying degrees within the same individual, rather than by mutually exclusive COPD subtypes.

Statistics

Citations

Dimensions.ai Metrics
5 citations in Web of Science®
6 citations in Scopus®
5 citations in Microsoft Academic
Google Scholar™

Altmetrics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > Epidemiology, Biostatistics and Prevention Institute (EBPI)
Dewey Decimal Classification:610 Medicine & health
Language:English
Date:November 2017
Deposited On:30 Jan 2018 17:45
Last Modified:19 Feb 2018 10:55
Publisher:BMJ Publishing Group
ISSN:0040-6376
OA Status:Closed
Free access at:Publisher DOI. An embargo period may apply.
Publisher DOI:https://doi.org/10.1136/thoraxjnl-2016-209846
PubMed ID:28637835

Download

Full text not available from this repository.
View at publisher

Get full-text in a library