Header

UZH-Logo

Maintenance Infos

Search for post-merger gravitational waves from the remnant of the binary neutron star merger GW170817


Abbott, B P; et al (2017). Search for post-merger gravitational waves from the remnant of the binary neutron star merger GW170817. Astrophysical Journal Letters, 851(1):L16.

Abstract

The first observation of a binary neutron star (NS) coalescence by the Advanced LIGO and Advanced Virgo gravitational-wave (GW) detectors offers an unprecedented opportunity to study matter under the most extreme conditions. After such a merger, a compact remnant is left over whose nature depends primarily on the masses of the inspiraling objects and on the equation of state of nuclear matter. This could be either a black hole (BH) or an NS, with the latter being either long-lived or too massive for stability implying delayed collapse to a BH. Here, we present a search for GWs from the remnant of the binary NS merger GW170817 using data from Advanced LIGO and Advanced Virgo. We search for short- (lesssim1 s) and intermediate-duration (lesssim500 s) signals, which include GW emission from a hypermassive NS or supramassive NS, respectively. We find no signal from the post-merger remnant. Our derived strain upper limits are more than an order of magnitude larger than those predicted by most models. For short signals, our best upper limit on the root sum square of the GW strain emitted from 1–4 kHz is ${h}_{\mathrm{rss}}^{50 \% }=2.1\times {10}^{-22}\,{\mathrm{Hz}}^{-1/2}$ at 50% detection efficiency. For intermediate-duration signals, our best upper limit at 50% detection efficiency is ${h}_{\mathrm{rss}}^{50 \% }=8.4\times {10}^{-22}\,{\mathrm{Hz}}^{-1/2}$ for a millisecond magnetar model, and ${h}_{\mathrm{rss}}^{50 \% }=5.9\times {10}^{-22}\,{\mathrm{Hz}}^{-1/2}$ for a bar-mode model. These results indicate that post-merger emission from a similar event may be detectable when advanced detectors reach design sensitivity or with next-generation detectors.

Abstract

The first observation of a binary neutron star (NS) coalescence by the Advanced LIGO and Advanced Virgo gravitational-wave (GW) detectors offers an unprecedented opportunity to study matter under the most extreme conditions. After such a merger, a compact remnant is left over whose nature depends primarily on the masses of the inspiraling objects and on the equation of state of nuclear matter. This could be either a black hole (BH) or an NS, with the latter being either long-lived or too massive for stability implying delayed collapse to a BH. Here, we present a search for GWs from the remnant of the binary NS merger GW170817 using data from Advanced LIGO and Advanced Virgo. We search for short- (lesssim1 s) and intermediate-duration (lesssim500 s) signals, which include GW emission from a hypermassive NS or supramassive NS, respectively. We find no signal from the post-merger remnant. Our derived strain upper limits are more than an order of magnitude larger than those predicted by most models. For short signals, our best upper limit on the root sum square of the GW strain emitted from 1–4 kHz is ${h}_{\mathrm{rss}}^{50 \% }=2.1\times {10}^{-22}\,{\mathrm{Hz}}^{-1/2}$ at 50% detection efficiency. For intermediate-duration signals, our best upper limit at 50% detection efficiency is ${h}_{\mathrm{rss}}^{50 \% }=8.4\times {10}^{-22}\,{\mathrm{Hz}}^{-1/2}$ for a millisecond magnetar model, and ${h}_{\mathrm{rss}}^{50 \% }=5.9\times {10}^{-22}\,{\mathrm{Hz}}^{-1/2}$ for a bar-mode model. These results indicate that post-merger emission from a similar event may be detectable when advanced detectors reach design sensitivity or with next-generation detectors.

Statistics

Citations

Dimensions.ai Metrics
19 citations in Web of Science®
18 citations in Scopus®
14 citations in Microsoft Academic
Google Scholar™

Altmetrics

Downloads

5 downloads since deposited on 09 Feb 2018
5 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:07 Faculty of Science > Physics Institute
Dewey Decimal Classification:530 Physics
Language:English
Date:2017
Deposited On:09 Feb 2018 12:53
Last Modified:03 Jul 2018 12:54
Publisher:IOP Publishing
ISSN:2041-8205
OA Status:Green
Free access at:Publisher DOI. An embargo period may apply.
Publisher DOI:https://doi.org/10.3847/2041-8213/aa9a35

Download

Download PDF  'Search for post-merger gravitational waves from the remnant of the binary neutron star merger GW170817'.
Preview
Content: Published Version
Filetype: PDF
Size: 1MB
View at publisher