Navigation auf zora.uzh.ch

Search ZORA

ZORA (Zurich Open Repository and Archive)

Migration von ZORA auf die Software DSpace

ZORA will change to a new software on 8th September 2025. Please note: deadline for new submissions is 21th July 2025!

Information & dates for training courses can be found here: Information on Software Migration.

Search for post-merger gravitational waves from the remnant of the binary neutron star merger GW170817

Abbott, B P; et al (2017). Search for post-merger gravitational waves from the remnant of the binary neutron star merger GW170817. Astrophysical Journal Letters, 851(1):L16.

Abstract

The first observation of a binary neutron star (NS) coalescence by the Advanced LIGO and Advanced Virgo gravitational-wave (GW) detectors offers an unprecedented opportunity to study matter under the most extreme conditions. After such a merger, a compact remnant is left over whose nature depends primarily on the masses of the inspiraling objects and on the equation of state of nuclear matter. This could be either a black hole (BH) or an NS, with the latter being either long-lived or too massive for stability implying delayed collapse to a BH. Here, we present a search for GWs from the remnant of the binary NS merger GW170817 using data from Advanced LIGO and Advanced Virgo. We search for short- (lesssim1 s) and intermediate-duration (lesssim500 s) signals, which include GW emission from a hypermassive NS or supramassive NS, respectively. We find no signal from the post-merger remnant. Our derived strain upper limits are more than an order of magnitude larger than those predicted by most models. For short signals, our best upper limit on the root sum square of the GW strain emitted from 1–4 kHz is ${h}_{\mathrm{rss}}^{50 \% }=2.1\times {10}^{-22}\,{\mathrm{Hz}}^{-1/2}$ at 50% detection efficiency. For intermediate-duration signals, our best upper limit at 50% detection efficiency is ${h}_{\mathrm{rss}}^{50 \% }=8.4\times {10}^{-22}\,{\mathrm{Hz}}^{-1/2}$ for a millisecond magnetar model, and ${h}_{\mathrm{rss}}^{50 \% }=5.9\times {10}^{-22}\,{\mathrm{Hz}}^{-1/2}$ for a bar-mode model. These results indicate that post-merger emission from a similar event may be detectable when advanced detectors reach design sensitivity or with next-generation detectors.

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:07 Faculty of Science > Physics Institute
Dewey Decimal Classification:530 Physics
Scopus Subject Areas:Physical Sciences > Astronomy and Astrophysics
Physical Sciences > Space and Planetary Science
Language:English
Date:2017
Deposited On:09 Feb 2018 12:53
Last Modified:17 Jul 2025 01:40
Publisher:IOP Publishing
ISSN:2041-8205
OA Status:Green
Free access at:Publisher DOI. An embargo period may apply.
Publisher DOI:https://doi.org/10.3847/2041-8213/aa9a35
Download PDF  'Search for post-merger gravitational waves from the remnant of the binary neutron star merger GW170817'.
Preview
  • Content: Published Version

Metadata Export

Statistics

Citations

Dimensions.ai Metrics
192 citations in Web of Science®
214 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

24 downloads since deposited on 09 Feb 2018
3 downloads since 12 months
Detailed statistics

Authors, Affiliations, Collaborations

Similar Publications