Header

UZH-Logo

Maintenance Infos

A resource for assessing information processing in the developing brain using EEG and eye tracking


Langer, Nicolas; Ho, Erica J; Alexander, Lindsay M; Xu, Helen Y; Jozanovic, Renee K; Henin, Simon; Petroni, Agustin; Cohen, Samantha; Marcelle, Enitan T; Parra, Lucas C; Milham, Michael P; Kelly, Simon P (2017). A resource for assessing information processing in the developing brain using EEG and eye tracking. Scientific Data, 4:170040.

Abstract

We present a dataset combining electrophysiology and eye tracking intended as a resource for the investigation of information processing in the developing brain. The dataset includes high-density task-based and task-free EEG, eye tracking, and cognitive and behavioral data collected from 126 individuals (ages: 6-44). The task battery spans both the simple/complex and passive/active dimensions to cover a range of approaches prevalent in modern cognitive neuroscience. The active task paradigms facilitate principled deconstruction of core components of task performance in the developing brain, whereas the passive paradigms permit the examination of intrinsic functional network activity during varying amounts of external stimulation. Alongside these neurophysiological data, we include an abbreviated cognitive test battery and questionnaire-based measures of psychiatric functioning. We hope that this dataset will lead to the development of novel assays of neural processes fundamental to information processing, which can be used to index healthy brain development as well as detect pathologic processes.

Abstract

We present a dataset combining electrophysiology and eye tracking intended as a resource for the investigation of information processing in the developing brain. The dataset includes high-density task-based and task-free EEG, eye tracking, and cognitive and behavioral data collected from 126 individuals (ages: 6-44). The task battery spans both the simple/complex and passive/active dimensions to cover a range of approaches prevalent in modern cognitive neuroscience. The active task paradigms facilitate principled deconstruction of core components of task performance in the developing brain, whereas the passive paradigms permit the examination of intrinsic functional network activity during varying amounts of external stimulation. Alongside these neurophysiological data, we include an abbreviated cognitive test battery and questionnaire-based measures of psychiatric functioning. We hope that this dataset will lead to the development of novel assays of neural processes fundamental to information processing, which can be used to index healthy brain development as well as detect pathologic processes.

Statistics

Citations

Dimensions.ai Metrics
32 citations in Web of Science®
37 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

61 downloads since deposited on 30 Jan 2018
13 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:06 Faculty of Arts > Institute of Psychology
Dewey Decimal Classification:150 Psychology
Scopus Subject Areas:Physical Sciences > Statistics and Probability
Physical Sciences > Information Systems
Social Sciences & Humanities > Education
Physical Sciences > Computer Science Applications
Social Sciences & Humanities > Statistics, Probability and Uncertainty
Social Sciences & Humanities > Library and Information Sciences
Language:English
Date:11 April 2017
Deposited On:30 Jan 2018 15:59
Last Modified:25 Nov 2023 08:07
Publisher:Nature Publishing Group
ISSN:2052-4463
OA Status:Gold
Free access at:PubMed ID. An embargo period may apply.
Publisher DOI:https://doi.org/10.1038/sdata.2017.40
PubMed ID:28398357
  • Content: Published Version
  • Language: English
  • Licence: Creative Commons: Attribution-NonCommercial-ShareAlike 3.0 Unported (CC BY-NC-SA 3.0)