Header

UZH-Logo

Maintenance Infos

Stromal Vascular Fraction-enriched Fat Grafting for the Treatment of Symptomatic End-neuromata


Zimmermann, Simon; Fakin, Richard M; Giesen, Thomas; Giovanoli, Pietro; Calcagni, Maurizio (2017). Stromal Vascular Fraction-enriched Fat Grafting for the Treatment of Symptomatic End-neuromata. Journal of Visualized Experiments (Jove), (129):1-10.

Abstract

The purpose of this study was to methodically illustrate and highlight the crucial steps of stromal vascular fraction (SVF)-enriched fat grafting as a novel treatment of symptomatic end-neuromata of peripheral sensory nerves, and in this study, specifically of the superficial branch of the radial nerve (SBRN). Despite a multitude of existing treatments, persistent postoperative pain and common pain relapse are still very common, independent of the procedure assessed. The neuroma is microsurgically excised accordingly to standardized protocol. Instead of the relocation of the regenerating nerve stump in neighboring anatomical structures, such as muscle or bone, a fat graft is applied perifocally and acts as a mechanical barrier. In order to reduce the fat resorption rate and boost the regenerative potential of the graft, the highly concentrated SVF is integrated in the grafting. The SVF is isolated from subcutaneous fat by enzymatic and mechanic separation of the lipoaspirate by a specific commercial isolation system. The SVF-enriched fat graft provides both a mechanical barrier and various biological effects at the cellular level, including improving angiogenesis, inflammation, and fibrosis. Both mechanical and biologic effects help to reduce the disorganized axonal outgrowth of the nerve stump during nerve regeneration and hence prevent the recurrence of painful end-neuromata.

Abstract

The purpose of this study was to methodically illustrate and highlight the crucial steps of stromal vascular fraction (SVF)-enriched fat grafting as a novel treatment of symptomatic end-neuromata of peripheral sensory nerves, and in this study, specifically of the superficial branch of the radial nerve (SBRN). Despite a multitude of existing treatments, persistent postoperative pain and common pain relapse are still very common, independent of the procedure assessed. The neuroma is microsurgically excised accordingly to standardized protocol. Instead of the relocation of the regenerating nerve stump in neighboring anatomical structures, such as muscle or bone, a fat graft is applied perifocally and acts as a mechanical barrier. In order to reduce the fat resorption rate and boost the regenerative potential of the graft, the highly concentrated SVF is integrated in the grafting. The SVF is isolated from subcutaneous fat by enzymatic and mechanic separation of the lipoaspirate by a specific commercial isolation system. The SVF-enriched fat graft provides both a mechanical barrier and various biological effects at the cellular level, including improving angiogenesis, inflammation, and fibrosis. Both mechanical and biologic effects help to reduce the disorganized axonal outgrowth of the nerve stump during nerve regeneration and hence prevent the recurrence of painful end-neuromata.

Statistics

Citations

Dimensions.ai Metrics
4 citations in Web of Science®
9 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

38 downloads since deposited on 15 Feb 2018
14 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > University Hospital Zurich > Clinic for Reconstructive Surgery
Dewey Decimal Classification:610 Medicine & health
Scopus Subject Areas:Life Sciences > General Neuroscience
Physical Sciences > General Chemical Engineering
Life Sciences > General Biochemistry, Genetics and Molecular Biology
Life Sciences > General Immunology and Microbiology
Language:English
Date:23 November 2017
Deposited On:15 Feb 2018 14:19
Last Modified:25 Nov 2023 08:09
Publisher:Journal of Visualized Experiments
ISSN:1940-087X
OA Status:Green
Free access at:PubMed ID. An embargo period may apply.
Publisher DOI:https://doi.org/10.3791/55962
PubMed ID:29286436
  • Content: Published Version