Header

UZH-Logo

Maintenance Infos

Seeding density is a crucial determinant for the in vivo vascularisation capacity of adipose tissue-derived microvascular fragments


Später, T; Körbel, C; Frueh, F S; Nickels, R M; Menger, M D; Laschke, M W (2017). Seeding density is a crucial determinant for the in vivo vascularisation capacity of adipose tissue-derived microvascular fragments. European Cells and Materials (ECM), 34:55-69.

Abstract

Adipose tissue-derived microvascular fragments (ad-MVF) represent effective vascularisation units for the seeding of dermal substitutes. However, particularly in case of extensive skin defects, the required amounts of donor fat tissue for the harvesting of ad-MVF may not always be available. Therefore, we herein determined the lowest ad-MVF density needed to induce a sufficient vascularisation and incorporation of seeded implants. Collagen-glycosaminoglycan matrices (Integra®; diameter: 4 mm) were seeded with 15,000 (HD), 10,000 (MD) and 5,000 (LD) ad-MVF and implanted into full-thickness skin defects within mouse dorsal skinfold chambers, to analyse their in vivo vascularisation and incorporation. Intravital fluorescence microscopy showed a comparable vascularisation of HD and MD ad-MVF-seeded Integra®, which was significantly higher when compared to LD ad-MVF-seeded Integra®. As assessed by photoacoustic imaging, this was associated with an increased oxygenation of the implants. Additional histological and immunohistochemical analyses revealed an enhanced cellular infiltration, collagen content, microvessel density and epithelialisation of HD and MD ad-MVF-seeded Integra®, indicating a better incorporation compared to LD ad-MVF-seeded implants. These findings demonstrate that 80,000 ad-MVF/cm² is the least required density to guarantee an effective vascularisation of the dermal substitute.

Abstract

Adipose tissue-derived microvascular fragments (ad-MVF) represent effective vascularisation units for the seeding of dermal substitutes. However, particularly in case of extensive skin defects, the required amounts of donor fat tissue for the harvesting of ad-MVF may not always be available. Therefore, we herein determined the lowest ad-MVF density needed to induce a sufficient vascularisation and incorporation of seeded implants. Collagen-glycosaminoglycan matrices (Integra®; diameter: 4 mm) were seeded with 15,000 (HD), 10,000 (MD) and 5,000 (LD) ad-MVF and implanted into full-thickness skin defects within mouse dorsal skinfold chambers, to analyse their in vivo vascularisation and incorporation. Intravital fluorescence microscopy showed a comparable vascularisation of HD and MD ad-MVF-seeded Integra®, which was significantly higher when compared to LD ad-MVF-seeded Integra®. As assessed by photoacoustic imaging, this was associated with an increased oxygenation of the implants. Additional histological and immunohistochemical analyses revealed an enhanced cellular infiltration, collagen content, microvessel density and epithelialisation of HD and MD ad-MVF-seeded Integra®, indicating a better incorporation compared to LD ad-MVF-seeded implants. These findings demonstrate that 80,000 ad-MVF/cm² is the least required density to guarantee an effective vascularisation of the dermal substitute.

Statistics

Citations

Dimensions.ai Metrics
3 citations in Web of Science®
3 citations in Scopus®
1 citation in Microsoft Academic
Google Scholar™

Altmetrics

Downloads

6 downloads since deposited on 15 Feb 2018
6 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > University Hospital Zurich > Clinic for Reconstructive Surgery
Dewey Decimal Classification:610 Medicine & health
Language:English
Date:15 August 2017
Deposited On:15 Feb 2018 14:21
Last Modified:19 Feb 2018 11:06
Publisher:European Cells & Materials Ltd
ISSN:1473-2262
OA Status:Hybrid
Free access at:Publisher DOI. An embargo period may apply.
Publisher DOI:https://doi.org/10.22203/eCM.v034a04
PubMed ID:28810287

Download

Download PDF  'Seeding density is a crucial determinant for the in vivo vascularisation capacity of adipose tissue-derived microvascular fragments'.
Preview
Content: Published Version
Filetype: PDF
Size: 4MB
View at publisher