Header

UZH-Logo

Maintenance Infos

Post-mortem computed tomography: Technical principles and recommended parameter settings for high-resolution imaging


Gascho, Dominic; Thali, Michael J; Niemann, Tilo (2018). Post-mortem computed tomography: Technical principles and recommended parameter settings for high-resolution imaging. Medicine, Science, and the Law, 58(1):70-82.

Abstract

Post-mortem computed tomography (PMCT) has become a standard procedure in many forensic institutes worldwide. However, the standard scan protocols offered by vendors are optimised for clinical radiology and its main considerations regarding computed tomography (CT), namely, radiation exposure and motion artefacts. Thus, these protocols aim at low-dose imaging and fast imaging techniques. However, these considerations are negligible in post-mortem imaging, which allows for significantly increased image quality. Therefore, the parameters have to be adjusted to achieve the best image quality. Several parameters affect the image quality differently and have to be weighed against each other to achieve the best image quality for different diagnostic interests. There are two main groups of parameters that are adjustable by the user: acquisition parameters and reconstruction parameters. Acquisition parameters have to be selected prior to scanning and affect the raw data composition. In contrast, reconstruction parameters affect the calculation of the slice stacks from the raw data. This article describes the CT principles from acquiring image data to post-processing and provides an overview of the significant parameters for increasing the image quality in PMCT. Based on the CT principles, the effects of these parameters on the contrast, noise, resolution and frequently occurring artefacts are described. This article provides a guide for the performance of PMCT in morgues, clinical facilities or private practices.

Abstract

Post-mortem computed tomography (PMCT) has become a standard procedure in many forensic institutes worldwide. However, the standard scan protocols offered by vendors are optimised for clinical radiology and its main considerations regarding computed tomography (CT), namely, radiation exposure and motion artefacts. Thus, these protocols aim at low-dose imaging and fast imaging techniques. However, these considerations are negligible in post-mortem imaging, which allows for significantly increased image quality. Therefore, the parameters have to be adjusted to achieve the best image quality. Several parameters affect the image quality differently and have to be weighed against each other to achieve the best image quality for different diagnostic interests. There are two main groups of parameters that are adjustable by the user: acquisition parameters and reconstruction parameters. Acquisition parameters have to be selected prior to scanning and affect the raw data composition. In contrast, reconstruction parameters affect the calculation of the slice stacks from the raw data. This article describes the CT principles from acquiring image data to post-processing and provides an overview of the significant parameters for increasing the image quality in PMCT. Based on the CT principles, the effects of these parameters on the contrast, noise, resolution and frequently occurring artefacts are described. This article provides a guide for the performance of PMCT in morgues, clinical facilities or private practices.

Statistics

Citations

Altmetrics

Downloads

73 downloads since deposited on 23 Feb 2018
73 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > Institute of Legal Medicine
Dewey Decimal Classification:340 Law
610 Medicine & health
Language:English
Date:2018
Deposited On:23 Feb 2018 09:05
Last Modified:14 Mar 2018 15:34
Publisher:Royal Society of Medicine Press
ISSN:0025-8024
OA Status:Green
Publisher DOI:https://doi.org/10.1177/0025802417747167
PubMed ID:29310502

Download

Download PDF  'Post-mortem computed tomography: Technical principles and recommended parameter settings for high-resolution imaging'.
Preview
Content: Published Version
Filetype: PDF
Size: 1MB
View at publisher