Header

UZH-Logo

Maintenance Infos

Minimized natural versions of fungal ribotoxins show improved active site plasticity


Maestro-López, Moisés; Olombrada, Miriam; García-Ortega, Lucía; Serrano-González, Daniel; Lacadena, Javier; Oñaderra, Mercedes; Gavilanes, José G; Martínez-del-Pozo, Álvaro (2017). Minimized natural versions of fungal ribotoxins show improved active site plasticity. Archives of Biochemistry and Biophysics, 619:45-53.

Abstract

Fungal ribotoxins are highly specific extracellular RNases which cleave a single phosphodiester bond at the ribosomal sarcin-ricin loop, inhibiting protein biosynthesis by interfering with elongation factors. Most ribotoxins show high degree of conservation, with similar sizes and amino acid sequence identities above 85%. Only two exceptions are known: hirsutellin A and anisoplin, produced by the entomopathogenic fungi Hirsutella thompsonii and Metarhizium anisopliae, respectively. Both proteins are similar but smaller than the other known ribotoxins (130 vs 150 amino acids), displaying only about 25% sequence identity with them. They can be considered minimized natural versions of their larger counterparts, best represented by α-sarcin. The conserved α-sarcin active site residue Tyr48 has been replaced by the geometrically equivalent Asp, present in the minimized ribotoxins, to produce and characterize the corresponding mutant. As a control, the inverse anisoplin mutant (D43Y) has been also studied. The results show how the smaller versions of ribotoxins represent an optimum compromise among conformational freedom, stability, specificity, and active-site plasticity which allow these toxic proteins to accommodate the characteristic abilities of ribotoxins into a shorter amino acid sequence and more stable structure of intermediate size between that of other nontoxic fungal RNases and previously known larger ribotoxins.

Abstract

Fungal ribotoxins are highly specific extracellular RNases which cleave a single phosphodiester bond at the ribosomal sarcin-ricin loop, inhibiting protein biosynthesis by interfering with elongation factors. Most ribotoxins show high degree of conservation, with similar sizes and amino acid sequence identities above 85%. Only two exceptions are known: hirsutellin A and anisoplin, produced by the entomopathogenic fungi Hirsutella thompsonii and Metarhizium anisopliae, respectively. Both proteins are similar but smaller than the other known ribotoxins (130 vs 150 amino acids), displaying only about 25% sequence identity with them. They can be considered minimized natural versions of their larger counterparts, best represented by α-sarcin. The conserved α-sarcin active site residue Tyr48 has been replaced by the geometrically equivalent Asp, present in the minimized ribotoxins, to produce and characterize the corresponding mutant. As a control, the inverse anisoplin mutant (D43Y) has been also studied. The results show how the smaller versions of ribotoxins represent an optimum compromise among conformational freedom, stability, specificity, and active-site plasticity which allow these toxic proteins to accommodate the characteristic abilities of ribotoxins into a shorter amino acid sequence and more stable structure of intermediate size between that of other nontoxic fungal RNases and previously known larger ribotoxins.

Statistics

Citations

Altmetrics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:07 Faculty of Science > Institute of Evolutionary Biology and Environmental Studies
Dewey Decimal Classification:570 Life sciences; biology
590 Animals (Zoology)
Language:English
Date:7 March 2017
Deposited On:01 Mar 2018 10:32
Last Modified:14 Mar 2018 17:46
Publisher:Elsevier
ISSN:0003-9861
OA Status:Closed
Publisher DOI:https://doi.org/10.1016/j.abb.2017.03.002

Download

Full text not available from this repository.
View at publisher

Get full-text in a library