Header

UZH-Logo

Maintenance Infos

Development and validation of outcome prediction models for aneurysmal subarachnoid haemorrhage: the SAHIT multinational cohort study


Jaja, Blessing N R; Saposnik, Gustavo; Lingsma, Hester F; et al; Schaller, Karl L; Stienen, Martin N (2018). Development and validation of outcome prediction models for aneurysmal subarachnoid haemorrhage: the SAHIT multinational cohort study. BMJ : British medical journal, 360:j5745.

Abstract

Objective To develop and validate a set of practical prediction tools that reliably estimate the outcome of subarachnoid haemorrhage from ruptured intracranial aneurysms (SAH). Design Cohort study with logistic regression analysis to combine predictors and treatment modality. Setting Subarachnoid Haemorrhage International Trialists’ (SAHIT) data repository, including randomised clinical trials, prospective observational studies, and hospital registries. Participants Researchers collaborated to pool datasets of prospective observational studies, hospital registries, and randomised clinical trials of SAH from multiple geographical regions to develop and validate clinical prediction models. Main outcome measure Predicted risk of mortality or functional outcome at three months according to score on the Glasgow outcome scale. Results Clinical prediction models were developed with individual patient data from 10 936 patients and validated with data from 3355 patients after development of the model. In the validation cohort, a core model including patient age, premorbid hypertension, and neurological grade on admission to predict risk of functional outcome had good discrimination, with an area under the receiver operator characteristics curve (AUC) of 0.80 (95% confidence interval 0.78 to 0.82). When the core model was extended to a “neuroimaging model,” with inclusion of clot volume, aneurysm size, and location, the AUC improved to 0.81 (0.79 to 0.84). A full model that extended the neuroimaging model by including treatment modality had AUC of 0.81 (0.79 to 0.83). Discrimination was lower for a similar set of models to predict risk of mortality (AUC for full model 0.76, 0.69 to 0.82). All models showed satisfactory calibration in the validation cohort. Conclusion The prediction models reliably estimate the outcome of patients who were managed in various settings for ruptured intracranial aneurysms that caused subarachnoid haemorrhage. The predictor items are readily derived at hospital admission. The web based SAHIT prognostic calculator (http://sahitscore.com) and the related app could be adjunctive tools to support management of patients.

Abstract

Objective To develop and validate a set of practical prediction tools that reliably estimate the outcome of subarachnoid haemorrhage from ruptured intracranial aneurysms (SAH). Design Cohort study with logistic regression analysis to combine predictors and treatment modality. Setting Subarachnoid Haemorrhage International Trialists’ (SAHIT) data repository, including randomised clinical trials, prospective observational studies, and hospital registries. Participants Researchers collaborated to pool datasets of prospective observational studies, hospital registries, and randomised clinical trials of SAH from multiple geographical regions to develop and validate clinical prediction models. Main outcome measure Predicted risk of mortality or functional outcome at three months according to score on the Glasgow outcome scale. Results Clinical prediction models were developed with individual patient data from 10 936 patients and validated with data from 3355 patients after development of the model. In the validation cohort, a core model including patient age, premorbid hypertension, and neurological grade on admission to predict risk of functional outcome had good discrimination, with an area under the receiver operator characteristics curve (AUC) of 0.80 (95% confidence interval 0.78 to 0.82). When the core model was extended to a “neuroimaging model,” with inclusion of clot volume, aneurysm size, and location, the AUC improved to 0.81 (0.79 to 0.84). A full model that extended the neuroimaging model by including treatment modality had AUC of 0.81 (0.79 to 0.83). Discrimination was lower for a similar set of models to predict risk of mortality (AUC for full model 0.76, 0.69 to 0.82). All models showed satisfactory calibration in the validation cohort. Conclusion The prediction models reliably estimate the outcome of patients who were managed in various settings for ruptured intracranial aneurysms that caused subarachnoid haemorrhage. The predictor items are readily derived at hospital admission. The web based SAHIT prognostic calculator (http://sahitscore.com) and the related app could be adjunctive tools to support management of patients.

Statistics

Citations

Dimensions.ai Metrics
2 citations in Web of Science®
3 citations in Scopus®
3 citations in Microsoft Academic
Google Scholar™

Altmetrics

Downloads

6 downloads since deposited on 02 Mar 2018
6 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > University Hospital Zurich > Clinic for Neurosurgery
Dewey Decimal Classification:610 Medicine & health
Language:English
Date:2018
Deposited On:02 Mar 2018 07:27
Last Modified:12 Jul 2018 06:51
Publisher:BMJ Publishing Group
ISSN:0959-535X
OA Status:Hybrid
Free access at:Publisher DOI. An embargo period may apply.
Publisher DOI:https://doi.org/10.1136/bmj.j5745
PubMed ID:29348138

Download

Download PDF  'Development and validation of outcome prediction models for aneurysmal subarachnoid haemorrhage: the SAHIT multinational cohort study'.
Preview
Content: Published Version
Filetype: PDF
Size: 2MB
View at publisher
Licence: Creative Commons: Attribution-NonCommercial 4.0 International (CC BY-NC 4.0)