Header

UZH-Logo

Maintenance Infos

Brain activity elicited by viewing pictures of the own virtually amputated body predicts xenomelia


Oddo-Sommerfeld, Silvia; Hänggi, Jürgen; Coletta, Ludovico; Skoruppa, Silke; Thiel, Aylin; Stirn, Aglaja V (2018). Brain activity elicited by viewing pictures of the own virtually amputated body predicts xenomelia. Neuropsychologia, 108:135-146.

Abstract

BACKGROUND: Xenomelia is a rare condition characterized by the persistent desire for the amputation of physically healthy limbs. Prior studies highlighted the importance of superior and inferior parietal lobuli (SPL/IPL) and other sensorimotor regions as key brain structures associated with xenomelia. We expected activity differences in these areas in response to pictures showing the desired body state, i.e. that of an amputee in xenomelia.

METHODS: Functional magnetic resonance images were acquired in 12 xenomelia individuals and 11 controls while they viewed pictures of their own real and virtually amputated body. Pictures were rated on several dimensions. Multivariate statistics using machine learning was performed on imaging data.

RESULTS: Brain activity when viewing pictures of one's own virtually amputated body predicted group membership accurately with a balanced accuracy of 82.58% (p = 0.002), sensitivity of 83.33% (p = 0.018), specificity of 81.82% (p = 0.015) and an area under the ROC curve of 0.77. Among the highest predictive brain regions were bilateral SPL, IPL, and caudate nucleus, other limb representing areas, but also occipital regions. Pleasantness and attractiveness ratings were higher for amputated bodies in xenomelia.

CONCLUSIONS: Findings show that neuronal processing in response to pictures of one's own desired body state is different in xenomelia compared with controls and might represent a neuronal substrate of the xenomelia complaints that become behaviourally relevant, at least when rating the pleasantness and attractiveness of one's own body. Our findings converge with structural peculiarities reported in xenomelia and partially overlap in task and results with that of anorexia and transgender research.

Abstract

BACKGROUND: Xenomelia is a rare condition characterized by the persistent desire for the amputation of physically healthy limbs. Prior studies highlighted the importance of superior and inferior parietal lobuli (SPL/IPL) and other sensorimotor regions as key brain structures associated with xenomelia. We expected activity differences in these areas in response to pictures showing the desired body state, i.e. that of an amputee in xenomelia.

METHODS: Functional magnetic resonance images were acquired in 12 xenomelia individuals and 11 controls while they viewed pictures of their own real and virtually amputated body. Pictures were rated on several dimensions. Multivariate statistics using machine learning was performed on imaging data.

RESULTS: Brain activity when viewing pictures of one's own virtually amputated body predicted group membership accurately with a balanced accuracy of 82.58% (p = 0.002), sensitivity of 83.33% (p = 0.018), specificity of 81.82% (p = 0.015) and an area under the ROC curve of 0.77. Among the highest predictive brain regions were bilateral SPL, IPL, and caudate nucleus, other limb representing areas, but also occipital regions. Pleasantness and attractiveness ratings were higher for amputated bodies in xenomelia.

CONCLUSIONS: Findings show that neuronal processing in response to pictures of one's own desired body state is different in xenomelia compared with controls and might represent a neuronal substrate of the xenomelia complaints that become behaviourally relevant, at least when rating the pleasantness and attractiveness of one's own body. Our findings converge with structural peculiarities reported in xenomelia and partially overlap in task and results with that of anorexia and transgender research.

Statistics

Citations

Dimensions.ai Metrics
14 citations in Web of Science®
16 citations in Scopus®
Google Scholar™

Altmetrics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:06 Faculty of Arts > Institute of Psychology
Dewey Decimal Classification:150 Psychology
Scopus Subject Areas:Social Sciences & Humanities > Experimental and Cognitive Psychology
Life Sciences > Cognitive Neuroscience
Life Sciences > Behavioral Neuroscience
Uncontrolled Keywords:Experimental and Cognitive Psychology, Cognitive Neuroscience, Behavioral Neuroscience
Language:English
Date:8 January 2018
Deposited On:08 Feb 2018 15:04
Last Modified:26 Jan 2022 15:59
Publisher:Elsevier
ISSN:0028-3932
OA Status:Closed
Publisher DOI:https://doi.org/10.1016/j.neuropsychologia.2017.11.025
PubMed ID:29174728
Project Information:
Full text not available from this repository.