Header

UZH-Logo

Maintenance Infos

Long-term effectiveness of irreversible electroporation in a murine model of colorectal liver metastasis


Sánchez-Velázquez, P; Castellví, Q; Villanueva, A; Iglesias, M; Quesada, R; Pañella, C; Cáceres, M; Dorcaratto, D; Andaluz, A; Moll, X; Burdío, J M; Grande, L; Ivorra, A; Burdío, F (2017). Long-term effectiveness of irreversible electroporation in a murine model of colorectal liver metastasis. Scientific Reports, 7:44821.

Abstract

Irreversible electroporation (IRE) has recently gained in popularity as an ablative technique, however little is known about its oncological long-term outcomes. To determine the long-time survival of animals treated with a high dose of IRE and which histological changes it induces in tumoral tissue, IRE ablation was performed in forty-six athymic-nude mice with KM12C tumors implanted in the liver by applying electric current with different voltages (2000 V/cm, 1000 V/cm). The tumors were allowed to continue to grow until the animals reached the end-point criteria. Histology was harvested and the extent of tumor necrosis was semi-quantitatively assessed. IRE treatment with the 2000 V/cm protocol significantly prolonged median mouse survival from 74.3 ± 6.9 days in the sham group to 112.5 ± 15.2 days in the 2000 V/cm group. No differences were observed between the mean survival of the 1000 V/cm and the sham group (83.2 ± 16.4 days, p = 0.62). Histology revealed 63.05% ± 23.12 of tumor necrosis in animals of the 2000 V/cm group as compared to 17.50% ± 2.50 in the 1000 V/cm group and 25.6% ± 22.1 in the Sham group (p = 0.001). IRE prolonged the survival of animals treated with the highest electric field (2000 V/cm). The animals in this group showed significantly higher rate of tumoral necrosis.

Abstract

Irreversible electroporation (IRE) has recently gained in popularity as an ablative technique, however little is known about its oncological long-term outcomes. To determine the long-time survival of animals treated with a high dose of IRE and which histological changes it induces in tumoral tissue, IRE ablation was performed in forty-six athymic-nude mice with KM12C tumors implanted in the liver by applying electric current with different voltages (2000 V/cm, 1000 V/cm). The tumors were allowed to continue to grow until the animals reached the end-point criteria. Histology was harvested and the extent of tumor necrosis was semi-quantitatively assessed. IRE treatment with the 2000 V/cm protocol significantly prolonged median mouse survival from 74.3 ± 6.9 days in the sham group to 112.5 ± 15.2 days in the 2000 V/cm group. No differences were observed between the mean survival of the 1000 V/cm and the sham group (83.2 ± 16.4 days, p = 0.62). Histology revealed 63.05% ± 23.12 of tumor necrosis in animals of the 2000 V/cm group as compared to 17.50% ± 2.50 in the 1000 V/cm group and 25.6% ± 22.1 in the Sham group (p = 0.001). IRE prolonged the survival of animals treated with the highest electric field (2000 V/cm). The animals in this group showed significantly higher rate of tumoral necrosis.

Statistics

Citations

Dimensions.ai Metrics
1 citation in Web of Science®
1 citation in Scopus®
1 citation in Microsoft Academic
Google Scholar™

Altmetrics

Downloads

2 downloads since deposited on 09 Feb 2018
2 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed
Communities & Collections:04 Faculty of Medicine > University Hospital Zurich > Clinic for Visceral and Transplantation Surgery
Dewey Decimal Classification:610 Medicine & health
Uncontrolled Keywords:Multidisciplinary
Language:English
Date:2017
Deposited On:09 Feb 2018 16:43
Last Modified:19 Aug 2018 14:25
Publisher:Nature Publishing Group
ISSN:2045-2322
OA Status:Gold
Free access at:PubMed ID. An embargo period may apply.
Publisher DOI:https://doi.org/10.1038/srep44821
PubMed ID:28327623

Download

Download PDF  'Long-term effectiveness of irreversible electroporation in a murine model of colorectal liver metastasis'.
Preview
Content: Published Version
Filetype: PDF
Size: 1MB
View at publisher
Licence: Creative Commons: Attribution 4.0 International (CC BY 4.0)