Header

UZH-Logo

Maintenance Infos

A Sensitive Dynamic and Active Pixel Vision Sensor for Color or Neural Imaging Applications


Moeys, Diederik Paul; Corradi, Federico; Li, Chenghan; Bamford, Simeon A; Longinotti, Luca; Voigt, Fabian F; Berry, Stewart; Taverni, Gemma; Helmchen, Fritjof; Delbruck, Tobi (2018). A Sensitive Dynamic and Active Pixel Vision Sensor for Color or Neural Imaging Applications. IEEE Transactions on Biomedical Circuits and Systems, 12(1):123-136.

Abstract

Applications requiring detection of small visual contrast require high sensitivity. Event cameras can provide higher dynamic range (DR) and reduce data rate and latency, but most existing event cameras have limited sensitivity. This paper presents the results of a 180-nm Towerjazz CIS process vision sensor called SDAVIS192. It outputs temporal contrast dynamic vision sensor (DVS) events and conventional active pixel sensor frames. The SDAVIS192 improves on previous DAVIS sensors with higher sensitivity for temporal contrast. The temporal contrast thresholds can be set down to 1% for negative changes in logarithmic intensity (OFF events) and down to 3.5% for positive changes (ON events). The achievement is possible through the adoption of an in-pixel preamplification stage. This preamplifier reduces the effective intrascene DR of the sensor (70 dB for OFF and 50 dB for ON), but an automated operating region control allows up to at least 110-dB DR for OFF events. A second contribution of this paper is the development of characterization methodology for measuring DVS event detection thresholds by incorporating a measure of signal-to-noise ratio (SNR). At average SNR of 30 dB, the DVS temporal contrast threshold fixed pattern noise is measured to be 0.3%-0.8% temporal contrast. Results comparing monochrome and RGBW color filter array DVS events are presented. The higher sensitivity of SDAVIS192 make this sensor potentially useful for calcium imaging, as shown in a recording from cultured neurons expressing calcium sensitive green fluorescent protein GCaMP6f.

Abstract

Applications requiring detection of small visual contrast require high sensitivity. Event cameras can provide higher dynamic range (DR) and reduce data rate and latency, but most existing event cameras have limited sensitivity. This paper presents the results of a 180-nm Towerjazz CIS process vision sensor called SDAVIS192. It outputs temporal contrast dynamic vision sensor (DVS) events and conventional active pixel sensor frames. The SDAVIS192 improves on previous DAVIS sensors with higher sensitivity for temporal contrast. The temporal contrast thresholds can be set down to 1% for negative changes in logarithmic intensity (OFF events) and down to 3.5% for positive changes (ON events). The achievement is possible through the adoption of an in-pixel preamplification stage. This preamplifier reduces the effective intrascene DR of the sensor (70 dB for OFF and 50 dB for ON), but an automated operating region control allows up to at least 110-dB DR for OFF events. A second contribution of this paper is the development of characterization methodology for measuring DVS event detection thresholds by incorporating a measure of signal-to-noise ratio (SNR). At average SNR of 30 dB, the DVS temporal contrast threshold fixed pattern noise is measured to be 0.3%-0.8% temporal contrast. Results comparing monochrome and RGBW color filter array DVS events are presented. The higher sensitivity of SDAVIS192 make this sensor potentially useful for calcium imaging, as shown in a recording from cultured neurons expressing calcium sensitive green fluorescent protein GCaMP6f.

Statistics

Citations

Dimensions.ai Metrics
2 citations in Web of Science®
1 citation in Scopus®
Google Scholar™

Altmetrics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:07 Faculty of Science > Institute of Neuroinformatics
04 Faculty of Medicine > Brain Research Institute
Dewey Decimal Classification:570 Life sciences; biology
610 Medicine & health
Language:English
Date:February 2018
Deposited On:01 Mar 2018 12:56
Last Modified:19 Aug 2018 14:52
Publisher:Institute of Electrical and Electronics Engineers
ISSN:1932-4545
OA Status:Closed
Publisher DOI:https://doi.org/10.1109/TBCAS.2017.2759783
PubMed ID:29377801
Project Information:
  • : FunderSNSF
  • : Grant ID31003A_149858
  • : Project TitleImaging cortico-cortical communication in mouse neocortex during behaviour

Download

Full text not available from this repository.
View at publisher

Get full-text in a library