Header

UZH-Logo

Maintenance Infos

Experimental soil warming shifts the fungal community composition at the alpine treeline


Solly, Emily F; Lindahl, Björn D; Dawes, Melissa A; Peter, Martina; Souza, Rômulo C; Rixen, Christian; Hagedorn, Frank (2017). Experimental soil warming shifts the fungal community composition at the alpine treeline. New Phytologist, 215(2):766-778.

Abstract

Increased CO2 emissions and global warming may alter the composition of fungal communities through the removal of temperature limitation in the plant–soil system, faster nitrogen (N) cycling and changes in the carbon (C) allocation of host plants to the rhizosphere.
At a Swiss treeline featuring Larix decidua and Pinus uncinata, the effects of multiple years of CO2 enrichment and experimental soil warming on the fungal community composition in the organic horizons were analysed using 454-pyrosequencing of ITS2 amplicons. Sporocarp production and colonization of ectomycorrhizal root tips were investigated in parallel.
Fungal community composition was significantly altered by soil warming, whereas CO2 enrichment had little effect. Tree species influenced fungal community composition and the magnitude of the warming responses. The abundance of ectomycorrhizal fungal taxa was positively correlated with N availability, and ectomycorrhizal taxa specialized for conditions of high N availability proliferated with warming, corresponding to considerable increases in inorganic N in warmed soils.
Traits related to N utilization are important in determining the responses of ectomycorrhizal fungi to warming in N-poor cold ecosystems. Shifts in the overall fungal community composition in response to higher temperatures may alter fungal-driven processes with potential feedbacks on ecosystem N cycling and C storage at the alpine treeline.

Abstract

Increased CO2 emissions and global warming may alter the composition of fungal communities through the removal of temperature limitation in the plant–soil system, faster nitrogen (N) cycling and changes in the carbon (C) allocation of host plants to the rhizosphere.
At a Swiss treeline featuring Larix decidua and Pinus uncinata, the effects of multiple years of CO2 enrichment and experimental soil warming on the fungal community composition in the organic horizons were analysed using 454-pyrosequencing of ITS2 amplicons. Sporocarp production and colonization of ectomycorrhizal root tips were investigated in parallel.
Fungal community composition was significantly altered by soil warming, whereas CO2 enrichment had little effect. Tree species influenced fungal community composition and the magnitude of the warming responses. The abundance of ectomycorrhizal fungal taxa was positively correlated with N availability, and ectomycorrhizal taxa specialized for conditions of high N availability proliferated with warming, corresponding to considerable increases in inorganic N in warmed soils.
Traits related to N utilization are important in determining the responses of ectomycorrhizal fungi to warming in N-poor cold ecosystems. Shifts in the overall fungal community composition in response to higher temperatures may alter fungal-driven processes with potential feedbacks on ecosystem N cycling and C storage at the alpine treeline.

Statistics

Citations

Dimensions.ai Metrics
3 citations in Web of Science®
2 citations in Scopus®
2 citations in Microsoft Academic
Google Scholar™

Altmetrics

Downloads

2 downloads since deposited on 26 Feb 2018
2 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:07 Faculty of Science > Institute of Geography
Dewey Decimal Classification:910 Geography & travel
Language:English
Date:2017
Deposited On:26 Feb 2018 16:35
Last Modified:19 Aug 2018 14:54
Publisher:Wiley-Blackwell Publishing, Inc.
ISSN:0028-646X
OA Status:Closed
Free access at:Publisher DOI. An embargo period may apply.
Publisher DOI:https://doi.org/10.1111/nph.14603
Project Information:
  • : FunderFP7
  • : Grant ID308371
  • : Project TitlePOLFREE - Policy Options for a Resource-Efficient Economy

Download