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BV-EQUIVALENCE BETWEEN TRIADIC GRAVITY AND BF

THEORY IN THREE DIMENSIONS

A. S. CATTANEO, M. SCHIAVINA, AND I. SELLIAH

Abstract. The triadic description of General Relativity in three dimensions
is known to be a BF theory. Diffeomorphisms, as symmetries, are easily re-
covered on shell from the symmetries of BF theory. This note describes an
explicit off-shell BV symplectomorphism between the BV versions of the two
theories, each endowed with their natural symmetries.

Introduction

A d-dimensional (classical) field theory is the (local) assignment of a space of

fields FM and an action functional S0
M : FM −→ R to any d-dimensional manifold M

(possibly with boundary), and most of its relevant physical information is contained
in the critical locus of the action ELM .

Under this perspective, any two assignments of a space of fields and a functional
that have diffeomorphic critical loci are candidates to be considered equivalent from
a physical standpoint.

However, when the theory admits an additional piece of data, a symmetry dis-
tribution DM in TFM , such that any of its sections annihilates SM , the picture
becomes more involved. Since configurations that are related by a symmetry trans-
formation are physically undistinguishable, the true space one looks at is the moduli
space of solutions up to said equivalence: EL

/
DM

. Such space is generically bad

- e.g. a stack of some sort - and one goes about the algebraic geometry of its de-
scription resolving the quotient by means of the Chevalley-Eilenberg-Koszul-Tate
complex.

This construction goes under the name of BV formalism and outputs the dg-
Poisson-algebra of functions over a (-1)-symplectic graded manifold, seen as an
extended space of fields F (in the sense that its degree-zero part is the original
space of fields), and a vector field Q of degree 1 (the differential of the dg-algebra)
encoding the symmetries. In addition, Q is the Hamiltonian vector field for a
function SM , the extended BV action1 [BV81, Sta96, Sta97].

In this dg-setting one can easily make sense of a notion of an equivalence of
BV data obtained, say, as alternative extension of the same classical data, or as
completely independent constructions, and since the cohomology in degree zero of
the (classical) BV complex is, by construction, a presentation of the algebra of

functions over ELM
/
DM , comparison of the cohomologies will provide a natural

language to understand equivalence of theories.
There are situations, though, where something stronger can be said about two

theories, when they are equivalent in a much stricter sense and an actual BV-
symplectomorphism between two BV complexes (viewed as functions on graded
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1Extended in the same sense used before.
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symplectic manifolds) can be found, such that the action functionals are pulled
back to one another.

In this paper we will show that this is indeed the case for General Relativity in
3 dimensions in the triadic formalism and nonabelian BF theory, where an explicit
canonical transformation will be given in terms of generating functions. As a matter
of fact, it is well known that the triadic version of 3D gravity is classically a BF
theory. The geometric symmetries for GR contain diffeomorphisms. On shell they
can be recovered from the symmetries of BF theory [Wit]. We extend this result
off-shell in the BV formalism.

The formulation of GR we will be using here is often (ambiguosly) referred to it
as Palatini–Cartan (PC) theory [Pal, Car]. Its analysis in 4 dimensions is carried
out in [CS17a], where the ambiguity in the nomenclature is also explained. For
more details on gravity in 2+1 dimensions, see [Carlip] and references therein.

1. Preliminaries

In this section we will review the basics of the BV formalism, the triad Palatini–
Cartan formulation of 3d - General Relativity as a gauge theory, of its counterpart
BF theory and how both can be extended to yield BV data.

1.1. BV formalism. We are interested in extending a classical field theory in
the cohomological framework developed by Batalin and Vilkovisky [BV81]. The
construction is aimed at replacing the reduced critical locus (solutions of the Euler-
Lagrange equations modulo gauge equivalence) with a smooth chain complex, seen
as a graded manifold. The gauge fixing procedure is interpreted as a choice of a
suitable Lagrangian submanifold of this extended space; however, in the present
paper we shall not be concerned with quantisation.

Here are the main definitions we will need.

Definition 1. A BV manifold is a 4-tuple (F ,Ω, S,Q), consisting of a (−1)-
symplectic graded manifold (F ,Ω), a cohomological vector field Q ∈ X[1](F), i.e.

such that [Q,Q] = 0 and a BV action, a function S : F −→ R such that ιQΩ = δS.

The main example shows up in field theory, where we may construct a BV
manifold for each input spacetime M , as follows:

Definition 2. A d-dimensional BV theory is the assignment to every closed d-

dimensional manifold M of a BV manifold (FM ,ΩM , QM , SM ), given in terms of

local data.

Remark 3. Observe that when a boundary is present the equation for the Hamil-

tonian function ιQΩ = δS is likely to be spoiled by a boundary term. This is handled

in the BV-BFV formalism of Cattaneo, Mnëv and Reshetikhin [CMR14]. However,

because the whole construction is local, it still makes sense to consider the BV-theory

as if there were no boundary.

Usually, the BV theory is constructed as an extension of some classical field
theory with gauge symmetry, i.e. the assignement of some space of fields FM a
local action functional S0

M on it and a symmetry distribution DM , provided that
the associated distribution is involutive on-shell. Most of the examples that show
up in physics are such that the symmetry distribution is given by the action of a
Lie algebra on the space of classical fields, e.g. Yang-Mills theory, Chern-Simons
theory, but also BF theory and General Relativity [CMR14, CS15, CS17b]. We call
these theories BRST-like, after the BRST construction [BRST], and the associated
BV-extension is minimal in some sense as determined by [BV81]:
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Theorem 4. Let (FM , S0
M , DM ) define a classical field theory with gauge symmetry.

If the distribution DM comes from a Lie algebra action, the functional

SM = S0
M + 〈Φ†, QΦ〉

on the space of fields FM = T ∗[−1]DM [1], where Φ is a multiplet of fields in DM [1]
and Φ† denotes the corresponding multiplet of dual fields, yields a BV theory together

with Q, the degree 1 vector field encoding the symmetries of DM , .

The definition we will need to state the main result of this work is the following:

Definition 5. A strong equivalence between the BV-theories

F
(1|2)
M :=

(
F

(1|2)
M ,Ω

(1|2)
M , Q

(1|2)
M , S

(1|2)
M

)

is a graded symplectomorphism Φ:
(
F

(1)
M ,Ω

(1)
M

)
−→

(
F

(2)
M ,Ω

(2)
M

)
preserving the

BV-action, i.e. Φ∗S
(2)
M = S

(1)
M .

1.2. 3d General Relativity. Consider P −→ M an SO(2, 1) bundle over an
orientable manifold M (for simplicity we will assume ∂M = 0) and let W −→ M

be an associated vector bundle endowed with a smooth fiberwise Minkowski metric
(W, η) and with an orientation. A co-frame field, sometimes called a triad or a
dreibein, is a bundle isomorphism e : TM −→ W covering the identity. We will
thus consider e ∈ Ω1

nd(M,W) (the subscript nd stands for nondegenerate) and use

the isomorphism so(2, 1) ≃
∧2

W ≃ W induced by the metric and the internal
hodge dual. Given a connection ω ∈ AP on P , its curvature Fω will be regarded as

a
∧2

-valued two-form one-form.
Denote by FGR := Ω1

nd(M,W)×AP the space of physical fields and consider the
action functional

S0
GR(Λ) =

∫

M

Tr[e ∧ Fω +
Λ

3
e3] (1)

with the trace denoting the pairing with volume form in
∧3

W and Λ ∈ R the
cosmological constant. The Euler–Lagrange equations are given by

Fω = 0 (2a)

dωe = 0 (2b)

and it is a well-known result that solving (2b) to yield ω = ω(e) one obtains the
Levi–Civita connection for the metric g = e∗η and (2a) then reduces to the Einstein
equations for g. Observe that with this redefinition, S0

GR reduces to the standard

Einstein–Hilbert action functional SEH =
∫
M

√
−|g|R[g].

The symmetries of this theory are given by the action of (infinitesimal) diffeo-
morfisms, and internal SO(2, 1) gauge transformations. Adapting to three dimen-
sions the costruction of [CS17b] we extend the classical data to a BV manifold by
declaring the following

QGR(e) =Lω
ξ e+ [χ, e] (3)

QGR(ω) =ιξFω + dωχ (4)

QGR(ξ) =Lξξ (5)

QGR(χ) =
1

2
([χ, χ]− ιξιξFω). (6)

where LA
ξ := [ιξ, dA]. This defines the cohomological vector field QGR of degree 1,

with ξ ∈ X[1](M) and χ ∈ Ω(M, adP ) the ghost fields, the space of BV-fields is

FGR = T ∗[−1] (FGR × X[1](M)× Ω(M, adP )) (7)
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If we decorate cotangent fields with a dagger, we can easily verify that the corre-
sponding BV-action is

SGR(Λ) = S0
GR(Λ)+

∫

M

〈e†, QGR(e)〉+〈A†, QGR(A)〉+〈χ†, QGR(χ)〉+〈ξ†, QGR(ξ)〉 =

=

∫

M

Tr[e∧Fω+e†(Lω
ξ e+[χ, e])+A†(ιξFω+dωχ)+

1

2
χ†([χ, χ]−ιξιξFω)+

1

2
ι[ξ,ξ]ξ

†]

(8)

It follows immediately that the 4-tuple FGR := (FGR,ΩGR, QGR, SGR) defines a
BV-theory [CS17b].

1.3. BF theory. Let us assume again that we are given the SO(2, 1) principal
bundle P −→ M and the associated oriented Minkowski bundle W −→ M . We
want to define BF theory as a classical field theory, so we consider the space of
fields FBF := Ω1(M,

∧2
W∗)×AP ∋ (B,A) together with the action functional

S0
BF :=

∫

M

〈B,FA〉 ≡

∫

M

Tr[BFA] (9)

where we identify
∧2

W∗ with W and use the volume form in
∧3

W .
The symmetries of this action are given by two sets of transformations on the

fields, one accounting for the internal SO(2, 1) gauge symmetry, while the other
stems from the fact that B can be shifted by a covariantly-exact form. In other
words, we can construct the degree-1 vector field

QBF (B) =dAτ + [c, B] (10)

QBF (A) =dAc (11)

QBF (τ) =[c, τ ] (12)

QBF (c) =
1

2
[c, c] (13)

over the space of BV fields

FBF := T ∗[−1]
(
FBF × Ω0(M,W)× Ω0(M,

∧2
W)
)

(14)

with τ ∈ Ω0(M,W), c ∈ Ω0(M,
∧2

W), and the BV extended action then reads

SBF =

∫

M

Tr

[
BFA +B†(dAτ + [c, B]) +A†dAc+ τ†[c, τ ] +

1

2
c†[c, c]

]
(15)

Summarising, it is a known result that the 4-tuple FBF := (FBF ,ΩBF , QBF , SBF )
defines a BV-theory.

Remark 6 (Classical equivalence). The first obvious observation that one could

make at this point is that when looking at the degree-zero part of the BV-manifold,

i.e. at the non-extended theory, there is an obvious map between the open subman-

ifold of FBF consisting of non degenerate vector valued one forms and connections,

to FGR. That map is the identity map.

One can also observe that the two sets of symmetries coincide on shell [Wit], as

is easily verified as follows: choose τ = −ιξB and c = −ιξA, then

dAτ = dAιξB = LA
ξ B − ιξdAB ≈ LξB

together with

dAc = −dAιξA = LA
ξ A− ιξFA ≈ LξA

where the symbol ≈ means equality on the critical locus, i.e. on-shell.
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In the rest of the paper we show how to extend the correspondence between the

symmetries also off shell in terms of the BV formalism.

Observe that it is possible to add a cosmological term to BF theory as well by
adding Λ

3

∫
M

TrB3 to S0
BF . In this case the theory admits an additional symmetry,

namely δΛA = Λ[B, τ ] ≡ ΛB∧τ . In the BV formalism this has to be complemented
by additional higher terms for ghosts and antifields in order to yield a solution to the
Classical Mater Equation (namely the term c†τ ∧ τ). Such solution is summarised
with the introduction of superfields, i.e. the inhomogeneous forms B = τ+B+A†+c†

and A = c+A+B† + τ†. The BV-extended BF action in the superfield formalism
then reads

SBF (Λ) =

∫

M

Tr

[
BFA +

Λ

3
B3

]
(16)

2. Strong equivalence

In this section we will prove that there is a strong equivalence between the BV
theories FBF and FGR. In order to do this we will adapt to three dimensions the
strong equivalnce between the Palatini–Cartan BV formulation of gravity presented
in [CS17b] and the version that was suggested by Piguet [Piguet]. The main differ-
ence between the two BV theories is that the latter involves non-covariant expres-
sions and non-global fields, but they are essentially equivalent up to (symplectic)
field redefinitions.

2.1. Non covariant BV teory. Consider the assignment

s e′ = Lξ′e
′ + [χ′, e′]

sω′ = Lξ′ω
′ + dω′χ′

s ξ′ =
1

2
[ξ′, ξ′]

sχ′ = Lξ′χ
′ +

1

2
[χ′, χ′]

(17)

defining a vector field s over

FPP := Ω1(M,W)× Ω1(M,
∧2

W)× X[1](M)× Ω0[1](M, adP ) ∋ (e′, ω′, ξ′, χ′)

which is cohomological, with ξ a vector field with ghost number gh(ξ) = 1 and θ a
function with values in Λ2V and ghost number gh(θ) = 1. The cotangent lift š of s
to FPP := T ∗[−1]FPP is a cohomological vector field, that defines a BV-manifold
together with the BV-extension of the Palatini action by s. We will denote such
extension by

SPP (Λ) = S0
GR(Λ) +

∫

M

Tr
{
e†′ (Lξ′e

′ + [χ′, e′]) + ω†′ (Lξ′ω
′ + dω′χ′)

}
+

+Tr

{
χ†′

(
Lξ′χ

′ +
1

2
[χ′, χ′]

)}
+

1

2
ι[χ′,χ′]ξ

†′. (18)

The subscript PP stands for Palatini-Piguet.

Proposition 7 ([CS17b]). The BV theory FPP = (FPP ,ΩPP , SPP , š) is strongly

equivalent to FGR.
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The proposition was proven for 4 space-time dimensions but it carries over in
one less dimension without obstructions. If we select charts in FPP and FGR we
can express the symplectomorphism in terms of the generating function2

F [χ†, ξ†, e†, ω†, e′, ω′, ξ′, χ′] :=

∫

M

χ†(ιξω
′ − χ′) + ιξξ

†′ − e†e′ − ω†ω′ (19)

and deduce the transformation rules as

p = −(−1)|q|
δG

δq
; Q = (−1)|P | δG

δP
, (20)

where q = (χ†, ξ, e, ω†), P = (e†′, ω′, ξ†′, χ′).
We will see how the non covariant theory will turn out to be a simplifying

intermediate step. In what follows we will indeed prove that there is the sequence
of strong equivalences FBF −→ FPP −→ FGR, that can be composed to yield the
desired strong equivalence between Palatini gravity and BF theory in 3 dimensions.

2.2. Strong Equivalence.

Theorem 8. The BV theories FBF and FPP are strongly equivalent. The symplec-

tomorphism between their spaces of fields is given by the generating function

G =(−1)|P|
[
Pe−ιξq

]top
(21)

=−B†

(
e− ιξω

† +
1

2
ι2ξχ

†

)
− τ†

(
−ιξe+

1

2
ι2ξω

† −
1

6
ι3ξχ

†

)
−A

(
ω† − ιξχ

†
)
− cχ†

where P = (B†, τ†, A, c) and q = (e, ω†, χ†).

Proof. Observe that the set of old coordinates is given by q = (ξ, q) = (ξ, e, ω†, χ†),
therefore, applying (20) we get the explicit transformation

B = e− ιξω
† +

1

2
ι2ξχ

† B† = e† − ιξτ
† (22a)

A = ω − ιξe
† +

1

2
ι2ξτ

† A† = ω† − ιξχ
† (22b)

c = χ− ιξω +
1

2
ι2ξe

† −
1

6
ι3ξτ

† c† = χ† (22c)

together with

τ = −ιξe+
1

2
ι2ξω

† −
1

6
ι3ξχ

† (23a)

ξ†a = τ†ea + e†ω†
a + ωχ†

a (23b)

Observe that Eq. (23b) can be solved in that e is an isomorphism, but it will be
easier to leave τ† implicit when checking that the given transformation effectively
yield the desired action-preserving symplectomorphism. Furthermore, notice that
in computing ξ†a = −(−1)|ξ

a| δG
δξa we used [ιξ, ι[ξ,ξ]] = 0 several times.

Using the expression for ξ†a we just found we can also compute ιδξξ
† = ιδξeτ

† +
ιδξω

†e† + ιδξχ
†ω, and ι[ξ,ξ]ξ

† = ι[ξ,ξ]eτ
† + ι[ξ,ξ]ω

†e† + ι[ξ,ξ]χ
†ω (notice the signs in

commuting τ† and ιδξe, as well as the sign in τ†eaδξ
a = −τ†ιδξe owing to the fact

that we consider ea as an odd object and ι ∂
∂xa

as an odd operator).

Then, if we denote the symplectomorphism generated in Eqts. (22) and (23) by
φ : FPP −→ FBF we can verify with a long but straightforward computation that

φ∗SBF = SPP , (24)

concluding the proof. X

2Observe that in [CS17b] the result differs by a trivial redefinition c 7→ −c.



BV-EQUIVALENCE BETWEEN TRIADIC GRAVITY AND BF THEORY IN THREE DIMENSIONS7

Remark 9. To verify that the symplectomorphism preserves the action functionals

one might find a couple of identities particularly handy. In particular, from the fact

that ι[ξ,ξ]ιξα = ιξι[ξ,ξ]α, in the case α ∈ Ωtop(M) and dim(M) = 3 we deduce

ιξL
ω
ξ ιξα = −

1

3
dωι

3
ξα.

Similarly, from ι2ξι[ξ,ξ]α = ιξι[ξ,ξ]ιξα = ι[ξ,ξ]ι
2
ξα, when α is a top-form we have

ι2ξdωι
2
ξα =

4

3
ιξdωι

3
ξα.

Finally, one repeatedly needs to use the derivation property of the k-fold contraction

with ξ on (top + k)-forms, e.g. 0 = ιξ(α ∧ β) = ιξα ∧ β + α ∧ ιξβ and ι2ξ(α ∧ β) =

2ιξα ∧ ιξβ + ι2ξα ∧ β + α ∧ ι2ξβ, implying ι2ξα ∧ β = α ∧ ι2ξβ.

Now we wold like to compose the two strong equivalences we have stated to
construct a direct morphism between the covariant 3d Palatini BV-theory and BF-
theory. In other words we want to complete the diagram

FBF
//

""
❋❋

❋❋
❋❋

❋❋
FGR

FPP

<<①①①①①①①①

(25)

This is clearly possible, and the next statement spells out the details.

Theorem 10. The BV theory for the 3-dimensional Palatini–Cartan theory of

gravity is strongly equivalent to 3-dimensional BF theory.

The canonical transformation between the underlying spaces of fields is generated

by the function

H = −B†

(
e− ιξω

† −
1

2
ι2ξχ

†

)
− τ†

(
−ιξe+

1

2
ι2ξω

† +
1

3
ι3ξχ

†

)
−Aω† − cχ† (26)

where fields are (A,B, c, τ) and their dual for BF-theory, and (e, ξ, ω, χ) together

with their duals for Palatini gravity.

Proof. To prove the result we use the standard formula for the composition of gen-
erating functions (for a recent account see, e.g., [CDW, Section 3.3] for the usual
case and [Ans, Section 2] for the super case.). Consider two canonical transfor-
mations between three symplectic manifolds parametrised by, respectively, (qi, pi).
Denote the generating functions of such canonical transformations by G(p1, q2) and
F (p2, q3), and assume that the generating functions are of degree −1 (this is the
appropriate case for −1 shifted symplectic manifolds, and the procedure can be
adapted to more general situations). Then we can find the generating function of
the composed symplectomorphism as the critical point (q2, p2) of the function3

H̃(q1, p1, q2, p2, q3, p3) = G(p1, q2) + F (p2, q3)− (−1)|p2|p2q2

that is to say

H(p1, q1, p3, q3) := H̃

(
q1, p1, (−1)|p2| ∂H̃

∂p2
,−(−1)|q2|

∂H̃

∂q2
, q3, p3

)

will generate the composite symplectomorphism. X

3We will write p2q2 by simplicity, but indeed mean the sum over all components.
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2.3. A closer look to the cosmological term. The pullback of the action func-
tionals can be performed explicitly by applying the explicit formulae, and the equiv-
alence can be verified directly. However, it is worth noting that the symplectomor-
phisms we found are stable under the addition of the respective cosmological terms,
as follows from the following observations:

Lemma 11. Consider φPP/GR : FPP/GR −→ FBF and denote by qi the i-th form

in φ∗
PP/GR (etιξB). Then q0 = 0 and q1 = e. Moreover, the function

L(t) :=

∫

M

(
etιξB

)3

is constant.

Proof. We write etιξB =
∑3

i=0 B
ξ
i and we can easily show that B

ξ
0 = τ + ιξB +

1
2 ι

2
ξA

† + 1
6 ι

3
ξc

†, B
ξ
1 = B + ιξA

† + 1
2 ι

2
ξc

†. Computing their pullback along the sym-
plectomorphisms φPP/GR we obtain q0 = 0 and q1 = e.

Finally, the time derivative L̇(t) reads

L̇(t) =

∫

M

ιξ(e
tιξB)3 = 0

X

Proposition 12. The symplectomorphisms φPP/GR map the cosmological term of

the BV-extended BF theory to the cosmological term of General Relativity.

Proof. Since L(t) is constant by Lemma 11, we can replace the cosmological term
L(0) with L(1) ∫

M

Tr[ΛB3] 

∫

M

Tr[Λ (eιξB)3]

Since by Lemma 11 q0 vanishes, it is easy to gather that the only term that

contributes to φ∗
PP/GR (etιξB)

3
is q31 = e3, proving the claim. X
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