Header

UZH-Logo

Maintenance Infos

Identification of flood reactivity regions via the functional clustering of hydrographs


Brunner, Manuela I; Viviroli, Daniel; Furrer, Reinhard; Seibert, Jan; Favre, Anne-Catherine (2018). Identification of flood reactivity regions via the functional clustering of hydrographs. Water Resources Research, 54(3):1852-1867.

Abstract

Flood hydrograph shapes contain valuable information on the flood-generation mechanisms of a catchment. To make good use of this information, we express flood hydrograph shapes as continuous functions using a functional data approach. We propose a clustering approach based on functional data for flood hydrograph shapes to identify a set of representative hydrograph shapes on a catchment scale and use these catchment-specific sets of representative hydrographs to establish regions of catchments with similar flood reactivity on a regional scale. We applied this approach to flood samples of 163 medium-size Swiss catchments. The results indicate that three representative hydrograph shapes sufficiently describe the hydrograph shape variability within a catchment and therefore can be used as a proxy for the flood behavior of a catchment. These catchment-specific sets of three hydrographs were used to group the catchments into three reactivity regions of similar flood behavior. These regions were not only characterized by similar hydrograph shapes and reactivity but also by event magnitudes and triggering event conditions. We envision these regions to be useful in regionalization studies, regional flood frequency analyses, and to allow for the construction of synthetic design hydrographs in ungauged catchments. The clustering approach based on functional data which establishes these regions is very flexible and has the potential to be extended to other geographical regions or towards the use in climate impact studies.

Abstract

Flood hydrograph shapes contain valuable information on the flood-generation mechanisms of a catchment. To make good use of this information, we express flood hydrograph shapes as continuous functions using a functional data approach. We propose a clustering approach based on functional data for flood hydrograph shapes to identify a set of representative hydrograph shapes on a catchment scale and use these catchment-specific sets of representative hydrographs to establish regions of catchments with similar flood reactivity on a regional scale. We applied this approach to flood samples of 163 medium-size Swiss catchments. The results indicate that three representative hydrograph shapes sufficiently describe the hydrograph shape variability within a catchment and therefore can be used as a proxy for the flood behavior of a catchment. These catchment-specific sets of three hydrographs were used to group the catchments into three reactivity regions of similar flood behavior. These regions were not only characterized by similar hydrograph shapes and reactivity but also by event magnitudes and triggering event conditions. We envision these regions to be useful in regionalization studies, regional flood frequency analyses, and to allow for the construction of synthetic design hydrographs in ungauged catchments. The clustering approach based on functional data which establishes these regions is very flexible and has the potential to be extended to other geographical regions or towards the use in climate impact studies.

Statistics

Citations

Altmetrics

Downloads

10 downloads since deposited on 08 Mar 2018
10 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:07 Faculty of Science > Institute of Mathematics
Dewey Decimal Classification:510 Mathematics
Language:English
Date:2018
Deposited On:08 Mar 2018 09:16
Last Modified:19 Apr 2018 01:03
Publisher:American Geophysical Union
ISSN:0043-1397
OA Status:Green
Free access at:Publisher DOI. An embargo period may apply.
Publisher DOI:https://doi.org/10.1002/2017WR021650

Download

Download PDF  'Identification of flood reactivity regions via the functional clustering of hydrographs'.
Preview
Content: Accepted Version
Language: English
Filetype: PDF
Size: 11MB
View at publisher