Header

UZH-Logo

Maintenance Infos

Positive diversity-functioning relationships in model communities of methanotrophic bacteria


Schnyder, Elvira; Bodelier, Paul L E; Hartmann, Martin; Henneberger, Ruth; Niklaus, Pascal A (2018). Positive diversity-functioning relationships in model communities of methanotrophic bacteria. Ecology, 99(3):714-723.

Abstract

Biodiversity enhances ecosystem functions such as biomass production and nutrient cycling. Although the majority of the terrestrial biodiversity is hidden in soils, very little is known about the importance of the diversity of microbial communities for soil functioning. Here, we tested effects of biodiversity on the functioning of methanotrophs, a specialized group of soil bacteria that plays a key role in mediating greenhouse gas emissions from soils. Using pure strains of methanotrophic bacteria, we assembled artificial communities of different diversity levels, with which we inoculated sterile soil microcosms. To assess the functioning of these communities, we measured methane oxidation by gas chromatography throughout the experiment and determined changes in community composition and community size at several time points by quantitative PCR and sequencing. We demonstrate that microbial diversity had a positive overyielding effect on methane oxidation, in particular at the beginning of the experiment. This higher assimilation of CH4 at high diversity translated into increased growth and significantly larger communities towards the end of the study. The overyielding of mixtures with respect to CH4 consumption and community size were positively correlated. The temporal CH4 consumption profiles of strain monocultures differed, raising the possibility that temporal complementarity of component strains drove the observed community-level strain richness effects; however, the community niche metric we derived from the temporal activity profiles did not explain the observed strain richness effect. The strain richness effect also was unrelated to both the phylogenetic and functional trait diversity of mixed communities. Overall, our results suggest that positive biodiversity–ecosystem-function relationships show similar patterns across different scales and may be widespread in nature. Additionally, biodiversity is probably also important in natural methanotrophic communities for the ecosystem function methane oxidation. Therefore, maintaining soil conditions that support a high diversity of methanotrophs may help to reduce the emission of the greenhouse gas methane.

Abstract

Biodiversity enhances ecosystem functions such as biomass production and nutrient cycling. Although the majority of the terrestrial biodiversity is hidden in soils, very little is known about the importance of the diversity of microbial communities for soil functioning. Here, we tested effects of biodiversity on the functioning of methanotrophs, a specialized group of soil bacteria that plays a key role in mediating greenhouse gas emissions from soils. Using pure strains of methanotrophic bacteria, we assembled artificial communities of different diversity levels, with which we inoculated sterile soil microcosms. To assess the functioning of these communities, we measured methane oxidation by gas chromatography throughout the experiment and determined changes in community composition and community size at several time points by quantitative PCR and sequencing. We demonstrate that microbial diversity had a positive overyielding effect on methane oxidation, in particular at the beginning of the experiment. This higher assimilation of CH4 at high diversity translated into increased growth and significantly larger communities towards the end of the study. The overyielding of mixtures with respect to CH4 consumption and community size were positively correlated. The temporal CH4 consumption profiles of strain monocultures differed, raising the possibility that temporal complementarity of component strains drove the observed community-level strain richness effects; however, the community niche metric we derived from the temporal activity profiles did not explain the observed strain richness effect. The strain richness effect also was unrelated to both the phylogenetic and functional trait diversity of mixed communities. Overall, our results suggest that positive biodiversity–ecosystem-function relationships show similar patterns across different scales and may be widespread in nature. Additionally, biodiversity is probably also important in natural methanotrophic communities for the ecosystem function methane oxidation. Therefore, maintaining soil conditions that support a high diversity of methanotrophs may help to reduce the emission of the greenhouse gas methane.

Statistics

Citations

Dimensions.ai Metrics
18 citations in Web of Science®
18 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

125 downloads since deposited on 02 Mar 2018
9 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:07 Faculty of Science > Institute of Evolutionary Biology and Environmental Studies
08 Research Priority Programs > Global Change and Biodiversity
Dewey Decimal Classification:570 Life sciences; biology
590 Animals (Zoology)
Scopus Subject Areas:Life Sciences > Ecology, Evolution, Behavior and Systematics
Uncontrolled Keywords:Ecology, Evolution, Behavior and Systematics
Language:English
Date:2018
Deposited On:02 Mar 2018 10:58
Last Modified:23 Feb 2022 11:57
Publisher:Ecological Society of America
ISSN:0012-9658
OA Status:Green
Free access at:Publisher DOI. An embargo period may apply.
Publisher DOI:https://doi.org/10.1002/ecy.2138
Project Information:
  • : FunderSNSF
  • : Grant ID315230_144065
  • : Project TitleThe stability of soil microbial functions under disturbance: A study of mechanisms linked to trace gas fluxes
  • Content: Published Version