Header

UZH-Logo

Maintenance Infos

Simulation of FRET dyes allows quantitative comparison against experimental data


Reinartz, Ines; Sinner, Claude; Nettels, Daniel; Stucki-Buchli, Brigitte; Stockmar, Florian; Panek, Pawel T; Jacob, Christoph R; Nienhaus, Gerd Ulrich; Schuler, Benjamin; Schug, Alexander (2018). Simulation of FRET dyes allows quantitative comparison against experimental data. Journal of Chemical Physics, 148(12):123321.

Abstract

Fully understanding biomolecular function requires detailed insight into the systems’ structural dynamics. Powerful experimental techniques such as single molecule Förster Resonance Energy Transfer (FRET) provide access to such dynamic information yet have to be carefully interpreted. Molecular simulations can complement these experiments but typically face limits in accessing slow time scales and large or unstructured systems. Here, we introduce a coarse-grained simulation technique that tackles these challenges. While requiring only few parameters, we maintain full protein flexibility and include all heavy atoms of proteins, linkers, and dyes. We are able to sufficiently reduce computational demands to simulate large or heterogeneous structural dynamics and ensembles on slow time scales found in, e.g., protein folding. The simulations allow for calculating FRET efficiencies which quantitatively agree with experimentally determined values. By providing atomically resolved trajectories, this work supports the planning and microscopic interpretation of experiments. Overall, these results highlight how simulations and experiments can complement each other leading to new insights into biomolecular dynamics and function.

Abstract

Fully understanding biomolecular function requires detailed insight into the systems’ structural dynamics. Powerful experimental techniques such as single molecule Förster Resonance Energy Transfer (FRET) provide access to such dynamic information yet have to be carefully interpreted. Molecular simulations can complement these experiments but typically face limits in accessing slow time scales and large or unstructured systems. Here, we introduce a coarse-grained simulation technique that tackles these challenges. While requiring only few parameters, we maintain full protein flexibility and include all heavy atoms of proteins, linkers, and dyes. We are able to sufficiently reduce computational demands to simulate large or heterogeneous structural dynamics and ensembles on slow time scales found in, e.g., protein folding. The simulations allow for calculating FRET efficiencies which quantitatively agree with experimentally determined values. By providing atomically resolved trajectories, this work supports the planning and microscopic interpretation of experiments. Overall, these results highlight how simulations and experiments can complement each other leading to new insights into biomolecular dynamics and function.

Statistics

Citations

Dimensions.ai Metrics
4 citations in Web of Science®
3 citations in Scopus®
1 citation in Microsoft Academic
Google Scholar™

Altmetrics

Downloads

5 downloads since deposited on 08 Mar 2018
5 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > Department of Biochemistry
07 Faculty of Science > Department of Biochemistry
Dewey Decimal Classification:570 Life sciences; biology
610 Medicine & health
Language:English
Date:2018
Deposited On:08 Mar 2018 19:11
Last Modified:12 Jun 2018 15:11
Publisher:American Institute of Physics
ISSN:0021-9606
OA Status:Hybrid
Free access at:Publisher DOI. An embargo period may apply.
Publisher DOI:https://doi.org/10.1063/1.5010434
PubMed ID:29604831

Download

Download PDF  'Simulation of FRET dyes allows quantitative comparison against experimental data'.
Preview
Content: Published Version
Filetype: PDF
Size: 1MB
View at publisher
Licence: Creative Commons: Attribution 4.0 International (CC BY 4.0)