Abstract
Azidohomoalanine (Aha) is an unnatural amino acid containing an infrared active azido side chain group that can, through frequency shifts of the azido stretch vibration, act as a probe of local structure. To realize the potential of such structural probes for protein science, we have developed a two-dimensional infrared spectrometer employing fast mechanical scanning and intrinsic phasing of the resulting spectra, leading to a lower sensitivity limit of similar to 100 mu OD level samples. Using this approach, we quantify the biomolecular recognition between a PDZ2 domain and two Aha-mutated peptides. It is shown that this method can distinguish different binding modes and that the energetics of binding can be determined.