Abstract
In most existing recommender systems, implicit or explicit interactions are treated as positive links and all unknown interactions are treated as negative links. The goal is to suggest new links that will be perceived as positive by users. However, as signed social networks and newer content services become common, it is important to distinguish between positive and negative preferences. Even in existing applications, the cost of a negative recommendation could be high when people are looking for new jobs, friends, or places to live.
In this work, we develop novel probabilistic latent factor models to recommend positive links and compare them with existing methods on five different openly available datasets. Our models are able to produce better ranking lists and are effective in the task of ranking positive links at the top, with fewer negative links (flops). Moreover, we find that modeling signed social networks and user preferences this way has the advantage of increasing the diversity of recommendations. We also investigate the effect of regularization on the quality of recommendations, a matter that has not received enough attention in the literature. We find that regularization parameter heavily affects the quality of recommendations in terms of both accuracy and diversity.