Abstract
Dark-field imaging has been demonstrated to provide complementary information about the unresolved microstructure of the investigated sample. The usual implementation of a grating interferometer, which can provide access to the dark-field signal, consists of linear gratings limiting the sensitivity to only one direction (perpendicular to the grating lines). Recently, a novel grating design, composed of circular unit cells, was proposed allowing 2D-omnidirectional dark-field sensitivity in a single shot. In this work we present a further optimisation of the proposed grating by changing the arrangement of the unit cells from a Cartesian to a hexagonal grid. We experimentally compare the two designs and demonstrate that the latter has an improved performance.