Abstract
In this paper, we propose a post classification smoothing method aimed at improving the accuracy and visual appearance of sub-decimeter image classification results. Starting from the class confidence maps of a supervised classifier, we find a set of high confidence markers and propagate labels on an extended region adjacency graph. We apply the proposed method on a challenging 5cm resolution dataset over Potsdam, Germany. The proposed algorithm outperforms state-of-the-art post classification smoothing algorithms both when the classifier is trained specifically on the image and when it is trained and tested in different set of images.