Header

UZH-Logo

Maintenance Infos

Toward Seamless Multiview Scene Analysis From Satellite to Street Level


Lefevre, Sebastien; Tuia, Devis; Wegner, Jan Dirk; Produit, Timothee; Nassaar, Ahmed Samy (2017). Toward Seamless Multiview Scene Analysis From Satellite to Street Level. Institute of Electrical and Electronics Engineers. Proceedings, 105(10):1884-1899.

Abstract

In this paper, we discuss and review how combined multiview imagery from satellite to street level can benefit scene analysis. Numerous works exist that merge information from remote sensing and images acquired from the ground for tasks such as object detection, robots guidance, or scene understanding. What makes the combination of overhead and street-level images challenging are the strongly varying viewpoints, the different scales of the images, their illuminations and sensor modality, and time of acquisition. Direct (dense) matching of images on a per-pixel basis is thus often impossible, and one has to resort to alternative strategies that will be discussed in this paper. For such purpose, we review recent works that attempt to combine images taken from the ground and overhead views for purposes like scene registration, reconstruction, or classification. After the theoretical review, we present three recent methods to showcase the interest and potential impact of such fusion on real applications (change detection, image orientation, and tree cataloging), whose logic can then be reused to extend the use of ground-based images in remote sensing and vice versa. Through this review, we advocate that cross fertilization between remote sensing, computer vision, and machine learning is very valuable to make the best of geographic data available from Earth observation sensors and ground imagery. Despite its challenges, we believe that integrating these complementary data sources will lead to major breakthroughs in Big GeoData. It will open new perspectives for this exciting and emerging field.

Abstract

In this paper, we discuss and review how combined multiview imagery from satellite to street level can benefit scene analysis. Numerous works exist that merge information from remote sensing and images acquired from the ground for tasks such as object detection, robots guidance, or scene understanding. What makes the combination of overhead and street-level images challenging are the strongly varying viewpoints, the different scales of the images, their illuminations and sensor modality, and time of acquisition. Direct (dense) matching of images on a per-pixel basis is thus often impossible, and one has to resort to alternative strategies that will be discussed in this paper. For such purpose, we review recent works that attempt to combine images taken from the ground and overhead views for purposes like scene registration, reconstruction, or classification. After the theoretical review, we present three recent methods to showcase the interest and potential impact of such fusion on real applications (change detection, image orientation, and tree cataloging), whose logic can then be reused to extend the use of ground-based images in remote sensing and vice versa. Through this review, we advocate that cross fertilization between remote sensing, computer vision, and machine learning is very valuable to make the best of geographic data available from Earth observation sensors and ground imagery. Despite its challenges, we believe that integrating these complementary data sources will lead to major breakthroughs in Big GeoData. It will open new perspectives for this exciting and emerging field.

Statistics

Citations

Dimensions.ai Metrics
42 citations in Web of Science®
50 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

2 downloads since deposited on 23 Mar 2018
0 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:07 Faculty of Science > Institute of Geography
Dewey Decimal Classification:910 Geography & travel
Scopus Subject Areas:Physical Sciences > Electrical and Electronic Engineering
Language:English
Date:2017
Deposited On:23 Mar 2018 14:59
Last Modified:26 Jan 2022 16:33
Publisher:Institute of Electrical and Electronics Engineers
ISSN:0018-9219
OA Status:Closed
Publisher DOI:https://doi.org/10.1109/JPROC.2017.2684300